首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers.  相似文献   

2.
以光谱指数为趋势面因子的降尺度方法被广泛用于遥感地表温度尺度转换中,但面临构建的光谱指数难以凸显地表温度分布规律、浅层的统计模型难以精准刻画趋势面因子与地表温度之间的复杂关系的不足。为此,本文以Landsat 8 ARD 地表温度产品为降尺度对象,以Landsat 8 OLI原始数据为潜在趋势面因子,构建地表温度降尺度残差网络(LSTDRN)的深度学习模型;探索适用于Landsat 8地表温度产品空间降尺度的趋势面波段或组合,并在不同季节、不同地表类型下与经典传统方法TsHARP进行定量比较。结果表明:LSTDRN方法利用Landsat 8 OLI原始单波段作为趋势面因子就能有较好的降尺度效果,增加潜在趋势面因子的组合数量并不能提高降尺度效果。不同地表覆盖类型实验中,LSTDRN方法降尺度效果整体优于经典传统方法,且以近红外波段、红光波段和归一化植被指数为趋势面因子时,近红外波段降尺度效果定量评价表现最佳;不同地表覆盖类型的LSTDRN降尺度效果排序为:植被>建筑>水体,而经典传统方法则没有表现出明显的差异。不同季节实验中,LSTDRN方法在春夏冬3季的降尺度效果的定量评价表现明显好于经典传统方法,两类方法的秋季降尺度结果相当。因此,提出的LSTDRN对Landsat 8遥感地表温度产品具有较好的降尺度效果,整体优于经典传统方法且稳定性更强。  相似文献   

3.
多尺度城市地表温度降尺度方法   总被引:1,自引:0,他引:1  
针对目前星载热红外传感器的空间分辨率低,无法满足城市尺度的生态环境研究需求的现状,该文选择地表覆盖类型复杂的区域,根据研究区土地覆盖类型,选取归一化植被指数(NDVI)、城市不透水面指数(ISA)、改进的归一化差异水体指数(MNDWI)等因子加入DisTrad模型,采用移动窗口逐步回归统计地表温度和因子的线性关系,利用半方差曲线函数和均方根误差综合确定最优移动窗口的大小,以提高地表温度降尺度精度。研究结果表明:改进的DisTrad模型在地表覆盖类型复杂区域,具有良好的降尺度目视效果,且具有较高的降尺度精度,尤其在低植被覆盖的建筑区、水体区域具有更高的精度。  相似文献   

4.
Land surface temperature (LST) plays a critical role in characterizing energy exchanges of the Earth's surface and atmosphere. Recent advances in thermal infrared (TIR) remote sensing technology enable the emergence of airborne very-high-resolution (VHR) TIR sensors to identify detailed LST distribution for environmental, geological and urban applications. However, the usage of airborne VHR TIR data may be limited by its high cost, long acquisition period, extensive data processing, etc. A cost-effective alternative could be VHR LST estimation. We proposed a physically based method, referred to as the VHR spectral unmixing and thermal mixing (VHR-SUTM) approach, to estimate LST at the meter level. Particularly, considering both spectral and thermal properties, spectral unmixing was employed to estimate fractional urban compositions for a comprehensive representation of heterogeneous urban surfaces. Further, VHR LST was modeled as a summation of the thermal features of representative urban compositions weighted by their respective abundances. Results suggest a high agreement between the resampled VHR LST estimates and the retrieved LSTs. With relatively high estimation accuracy (RMSE of 2.02 K and MAE of 1.51 K), the VHR-SUTM technique could serve as a promising and practical method for various applications in urban and environment studies.  相似文献   

5.
王祎婷  谢东辉  李亚惠 《遥感学报》2014,18(6):1169-1181
针对城市及周边区域建造区和自然地表交织分布的特点,探讨了利用归一化植被指数(NDVI)和归一化建造指数(NDBI)构造趋势面的地表温度(LST)降尺度方法,以北京市市区及周边较平坦区域为例实现了LST自960 m向120 m的降尺度转换。分析了LST空间分布特征及NDVI、NDBI对地物的指示性特征;以北京市四至六环为界分析NDVI、NDBI趋势面对地表温度的拟合程度及各自的适用区域;在120 m、240 m、480 m和960 m 4个尺度上评价了NDVI、NDBI和NDVI+NDBI趋势面对LST的拟合程度和趋势面转换函数的尺度效应;对NDVI、NDBI和NDVI NDBI等3种方法的降尺度结果分覆盖类型、分区域对比评价。实验结果表明结合两种光谱指数的NDVI NDBI方法降尺度转换精度有所改善,改善程度取决于地表覆盖类型组合。  相似文献   

6.
城市不透水面覆盖度与地面温度遥感估算与分析   总被引:2,自引:0,他引:2  
全球气候变暖和城市化的快速发展,导致了城市不透水面急剧增加和热岛效应日趋严重.本文综合利用多源遥感数据进行城市不透水面覆盖度(ISP)和地面温度(LST)的估算,实验结果较好地反映了城市ISP和LST的空间分布和变化状况;同时对二者之间的相关关系进行了简要分析,发现ISP与地面温度之间具有正相关关系,为通过绿化建设改善...  相似文献   

7.
The land surface temperature (LST) is an important parameter when studying the interface between the atmosphere and the Earth's surface. Compared to satellite thermal infrared (TIR) remote sensing, passive microwave (PMW) remote sensing is better able to overcome atmospheric influences and to estimate the LST, especially in cloudy regions. However, methods for estimating PMW LSTs at the country and continental scales are still rare. The necessity of training such methods from a temporally dynamic perspective also needs further investigations. Here, a temporally land cover based look-up table (TL-LUT) method is proposed to estimate the LSTs from AMSR-E data over the Chinese landmass. In this method, the synergies between observations from MODIS (Moderate Resolution Imaging Spectroradiometer) and AMSR-E (Advanced Microwave Scanning Radiometer for EOS), which are onboard the same Aqua satellite, are explored. Validation with the synchronous MODIS LSTs demonstrates that the TL-LUT method has better performances in retrieving LSTs with AMSR-E data than the method that uses a single brightness temperature in 36.5 GHz vertical polarization channel. The accuracy of the TL-LUT method is better than 2.7 K for forest and 3.2 K for cropland. Its accuracy varies according to land cover type, time of day, and season. When compared with the in-situ measured LSTs at four sites without urban warming in the Tibet Plateau, the standard errors of estimation between the estimated AMSR-E LST and in-situ measured LST are from 5.1 K to 6.0 K in the daytime and 3.1 K to 4.5 K in the nighttime. Further comparison with the in-situ measured air temperatures at 24 meteorological stations confirms the good performance of the TL-LUT method. The feasibility of PMW remote sensing in estimating the LST for China can complement the TIR data and can, therefore, aid in the generation of daily LST maps for the entire country. Further study of the penetration of PMW radiation would benefit the LST estimations in barren and other sparsely vegetated environments.  相似文献   

8.
This paper describes the development of a system for decimetre-scale monitoring of land-surface and land-cover in urban and peri-urban environments. We describe our methodology that comprises the application of highly automated processing and analysis methods to digital aerial photography. The approach described in this paper addresses a monitoring need by providing the ability to generate change information at a spatial resolution suitable for urban, peri-urban and coastal areas, where an increasing percentage of the worlds’ population dwells. These areas are dynamic, with many environmental issues associated with planning, service provision, resource management and allocation, as well as monitoring regulatory compliance. We present a system based on standardised data and methods, which is able to track and communicate changes in features of interest in a way that has not been previously possible. We describe the methodology and then demonstrate its feasibility by applying it to geographic areas of planning and policy relevant size (the order of tens of thousands of square kilometres). We demonstrate the approach by applying it to the problem of urban forest assessment.  相似文献   

9.
单窗算法结合Landsat8热红外数据反演地表温度   总被引:4,自引:0,他引:4  
Landsat热红外系列数据一直是地表温度反演重要的遥感数据源,目前用于地表温度反演的单窗算法主要针对Landsat TM/ETM+第6波段数据(TM 6)建立的,Landsat 8热红外传感器(TIRS)与TM 6相比有很多变化,因而其单窗算法也需要改进。本文以Landsat 8 TIRS第10波段(TIRS 10)为数据源,提出了针对TIRS 10的单窗算法(TIRS10_SC),并对研究区地表温度进行反演研究,确定了研究区不同类型地表的温度值。研究结果表明:(1)TIRS10_SC算法可以较好地应用于Landsat 8数据的地表温度反演,平均反演误差为0.83℃,相关系数为0.805,反演温度与模拟数据和实测数据都具有较好的一致性;(2)通过对单窗算法中的地表发射率、大气水汽含量和大气平均作用温度等参数敏感性分析发现,TIRS10 SC算法能够获得较为可靠的反演结果;同时,TIRS10 SC算法对大气水汽含量和地表发射率敏感性较高,对大气平均作用温度敏感性稍弱。该算法对于利用Landsat 8 TIRS数据快速反演地表温度具有应用价值。  相似文献   

10.
地表温度与发射率是地表—大气系统长波辐射和潜热通量交换的直接驱动力,是描述区域和全球尺度上地表能量平衡与水平衡的重要参数,其时空变化信息在气象预测、气候变化、水循环、地质勘探、农林监测和城市热环境等诸多领域具有广泛的应用.热红外遥感作为当前获取区域或全球尺度上地表温度和发射率的最有效手段之一,相较于传统的地面点位测量方...  相似文献   

11.
Very high spatial and temporal resolution remote sensing data facilitate mapping highly complex and diverse urban environments. This study analyzed and demonstrated the usefulness of combined high-resolution aerial digital images and elevation data, and its processing using object-based image analysis for mapping urban land covers and quantifying buildings. It is observed that mapping heterogeneous features across large urban areas is time consuming and challenging. This study presents and demonstrates an approach for formulating an optimal land cover classification rule set over small representative training urban area image, and its subsequent transfer to the multisensor, multitemporal images. The classification results over the training area showed an overall accuracy of 96%, and the application of rule set to different sensor images of other test areas resulted in reduced accuracies of 91% for the same sensor, 90% and 86% for the different sensors temporal data. The comparison of reference and classified buildings showed ±4% detection errors. Classification through a transferred rule set reduced the classification accuracy by about 5%–10%. However, the trade-off for this accuracy drop was about a 75% reduction in processing time for performing classification in the training area. The factors influencing the classification accuracies were mainly the shadow and temporal changes in the class characteristics.  相似文献   

12.
Pest risk maps for agricultural use are usually constructed from data obtained from in-situ meteorological weather stations, which are relatively sparsely distributed and are often quite expensive to install and difficult to maintain. This leads to the creation of maps with relatively low spatial resolution, which are very much dependent on interpolation methodologies. Considering that agricultural applications typically require a more detailed scale analysis than has traditionally been available, remote sensing technology can offer better monitoring at increasing spatial and temporal resolutions, thereby, improving pest management results and reducing costs. This article uses ground temperature, or land surface temperature (LST), data distributed by EUMETSAT/LSASAF (with a spatial resolution of 3 × 3 km (nadir resolution) and a revisiting time of 15 min) to generate one of the most commonly used parameters in pest modeling and monitoring: “thermal integral over air temperature (accumulated degree-days)”. The results show a clear association between the accumulated LST values over a threshold and the accumulated values computed from meteorological stations over the same threshold (specific to a particular tomato pest). The results are very promising and enable the production of risk maps for agricultural pests with a degree of spatial and temporal detail that is difficult to achieve using in-situ meteorological stations.  相似文献   

13.
This study examined changes in urban expansion and land surface temperature in Beijing between 1990 and 2014 using multitemporal TM, ETM+, and OLI images, and evaluated the relationship between percent impervious surface area (%ISA) and relative mean annual surface temperature (RMAST). From 1990 to 2001, both internal land transformation and outward expansion were observed. In the central urban area, the high-density urban areas decreased by almost 7 km2, while the moderate- and high-density urban land areas increased by 250 and 90 km2, respectively, outside of the third ring road. From 2001 to 2014, high-density urban areas between the fifth and sixth ring roads experienced the greatest increase by more than 210 km2, and RMAST generally increased with %ISA. During 1990–2001 and 2001–2014, RMAST increased by more than 1.5 K between the south third and fifth ring roads, and %ISA increased by more than 50% outside of the fifth ring road. These trends in urban expansion and RMAST over the last two decades in Beijing can provide useful information for urban planning decisions.  相似文献   

14.
Predicting land surface energy budgets requires precise information of land surface emissivity (LSE) and land surface temperature (LST). LST is one of the essential climate variables as well as an important parameter in the physics of land surface processes at local and global scales, while LSE is an indicator of the material composition. Despite the fact that there are numerous publications on methods and algorithms for computing LST and LSE using remotely sensed data, accurate prediction of these variables is still a challenging task. Among the existing approaches for calculating LSE and LST, particular attention has been paid to the normalised difference vegetation index threshold method (NDVITHM), especially for agriculture and forest ecosystems. To apply NDVITHM, knowledge of the proportion of vegetation cover (PV) is essential. The objective of this study is to investigate the effect of the prediction accuracy of the PV on the estimation of LSE and LST when using NDVITHM. In August 2015, a field campaign was carried out in mixed temperate forest of the Bavarian Forest National Park, in southeastern Germany, coinciding with a Landsat-8 overpass. The PV was measured in the field for 37 plots. Four different vegetation indices, as well as artificial neural network approaches, were used to estimate PV and to compute LSE and LST. The results showed that the prediction accuracy of PV improved using an artificial neural network (R2CV = 0.64, RMSECV = 0.05) over classic vegetation indices (R2CV = 0.42, RMSECV = 0.06). The results of this study also revealed that variation in the accuracy of the estimated PV affected calculation results of the LSE. In addition, our findings revealed that, though LST depends on LSE, other parameters should also be taken into account when predicting LST, as more accurate LSE results did not increase the prediction accuracy of LST.  相似文献   

15.
孟翔晨  刘昊  程洁 《遥感学报》2019,23(4):570-581
地表温度日变化模型作为非常重要的输入参数在气象、水文、生态等领域研究中具有重要意义。风云二号(FY-2F)静止气象卫星的地表温度产品的时间分辨率为1小时,这为拟合精确的地表温度日变化(DSTC)模型提供了可能。本文首先利用194个气象站点对应的2014年的FY-2F地表温度产品评价了GOT01、VAN06、JNG06、INA08、GOT09和GEM_V这6种地表温度日变化模型在中国区的模拟精度,对不同时间窗口和不同地表覆盖类型拟合精度的差异进行了分析;其次,选用JNG06模型探究了中国区域地表温度随经纬度、季节和地表覆盖类型的日变化规律。研究结果表明:在不同时间窗口内,GOT09模型获得了全局最优的拟合精度,均方根误差为0.89 K;JNG06和GEM_V模型精度次之,均方根误差分别为0.92 K和0.94 K;GOT01、INA08和VAN06模型精度最差;各模型在城市和建筑区、农用地和自然植被以及常绿阔叶林这3类地表覆盖类型的拟合精度最好,其均方根误差在0.89—0.92 K,在其余地表覆盖类型的拟合精度在1.0 K以上。JNG06模型模拟的地表温度在4种典型的地表类型随纬度的变化规律较为明显,地表温度在1月份随纬度变化较为剧烈,在7月份整体波动较为平缓。综上所述,使用FY-2F地表温度产品建立的DSTC模型在中国区域具有较高的精度,模拟的地表温度随着纬度变化的规律较为明显。使用本文模型既可以纠正现有模型又可获取归一化地表温度产品,同时可以检验和标定陆面模式地表温度模拟结果。  相似文献   

16.
In this study, we presented a mono-window (MW) algorithm for land surface temperature retrieval from Landsat 8 TIRS. MW needs spectral radiance and emissivity of thermal infrared bands as input for deriving LST. The spectral radiance was estimated using band 10, and the surface emissivity value was derived with the help of NDVI and vegetation proportion parameters for which OLI bands 5 and 4 were used. The results in comparison with MODIS (MOD11A1) products indicated that the proposed algorithm is capable of retrieving accurate LST values, with a correlation coefficient of 0.850. The industrial area, public facilities and military area show higher surface temperature (more than 37 °C) in comparison with adjoining areas, while the green spaces in urban areas (34 °C) and forests (29 °C) were the cooler part of the city. These successful results obtained in the study could be used as an efficient method for the environmental impact assessment.  相似文献   

17.
The urban heat island (UHI) refers to the phenomenon of higher atmospheric and surface temperatures occurring in urban areas than in the surrounding rural areas. Mitigation of the UHI effects via the configuration of green spaces and sustainable design of urban environments has become an issue of increasing concern under changing climate. In this paper, the effects of the composition and configuration of green space on land surface temperatures (LST) were explored using landscape metrics including percentage of landscape (PLAND), edge density (ED) and patch density (PD). An oasis city of Aksu in Northwestern China was used as a case study. The metrics were calculated by moving window method based on a green space map derived from Landsat Thematic Mapper (TM) imagery, and LST data were retrieved from Landsat TM thermal band. A normalized mutual information measure was employed to investigate the relationship between LST and the spatial pattern of green space. The results showed that while the PLAND is the most important variable that elicits LST dynamics, spatial configuration of green space also has significant effect on LST. Though, the highest normalized mutual information measure was with the PLAND (0.71), it was found that the ED and PD combination is the most deterministic factors of LST than the unique effects of a single variable or the joint effects of PLAND and PD or PLAND and ED. Normalized mutual information measure estimations between LST and PLAND and ED, PLAND and PD and ED and PD were 0.7679, 0.7650 and 0.7832, respectively. A combination of the three factors PLAND, PD and ED explained much of the variance of LST with a normalized mutual information measure of 0.8694. Results from this study can expand our understanding of the relationship between LST and street trees and vegetation, and provide insights for sustainable urban planning and management under changing climate.  相似文献   

18.
The present study proposes land surface temperature (LST) retrieval from satellite-based thermal IR data by single channel radiative transfer algorithm using atmospheric correction parameters derived from satellite-based and in-situ data and land surface emissivity (LSE) derived by a hybrid LSE model. For example, atmospheric transmittance (τ) was derived from Terra MODIS spectral radiance in atmospheric window and absorption bands, whereas the atmospheric path radiance and sky radiance were estimated using satellite- and ground-based in-situ solar radiation, geographic location and observation conditions. The hybrid LSE model which is coupled with ground-based emissivity measurements is more versatile than the previous LSE models and yields improved emissivity values by knowledge-based approach. It uses NDVI-based and NDVI Threshold method (NDVITHM) based algorithms and field-measured emissivity values. The model is applicable for dense vegetation cover, mixed vegetation cover, bare earth including coal mining related land surface classes. The study was conducted in a coalfield of India badly affected by coal fire for decades. In a coal fire affected coalfield, LST would provide precise temperature difference between thermally anomalous coal fire pixels and background pixels to facilitate coal fire detection and monitoring. The derived LST products of the present study were compared with radiant temperature images across some of the prominent coal fire locations in the study area by graphical means and by some standard mathematical dispersion coefficients such as coefficient of variation, coefficient of quartile deviation, coefficient of quartile deviation for 3rd quartile vs. maximum temperature, coefficient of mean deviation (about median) indicating significant increase in the temperature difference among the pixels. The average temperature slope between adjacent pixels, which increases the potential of coal fire pixel detection from background pixels, is significantly larger in the derived LST products than the corresponding radiant temperature images.  相似文献   

19.
As more than 50% of the human population are situated in cities of the world, urbanization has become an important contributor to global warming due to remarkable urban heat island (UHI) effect. UHI effect has been linked to the regional climate, environment, and socio-economic development. In this study, Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) imagery, respectively acquired in 1989 and 2001, were utilized to assess urban area thermal characteristics in Fuzhou, the capital city of Fujian province in south-eastern China. As a key indicator for the assessment of urban environments, sub-pixel impervious surface area (ISA) was mapped to quantitatively determine urban land-use extents and urban surface thermal patterns. In order to accurately estimate urban surface types, high-resolution imagery was utilized to generate the proportion of impervious surface areas. Urban thermal characteristics was further analysed by investigating the relationships between the land surface temperature (LST), percent impervious surface area, and two indices, the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI). The results show that correlations between NDVI and LST are rather weak, but there is a strong positive correlation between percent ISA, NDBI and LST. This suggests that percent ISA, combined with LST, and NDBI, can quantitatively describe the spatial distribution and temporal variation of urban thermal patterns and associated land-use/land-cover (LULC) conditions.  相似文献   

20.
Indian geostationary satellite Kalpana-1 (K1) offers a potential to capture the diurnal cycle of land surface temperature (LST) through thermal infrared channel (10.5–12.5 μm) observations of the Very High Resolution Radiometer (VHRR) sensor. A study was carried out to retrieve LST by adapting a generalized single-channel (SC) algorithm (Jiménez-Muñoz and Sobrino, 2003) for the VHRR sensor over India. The basis of SC algorithm depends on the concept of Atmospheric Functions (AFs) that are dependent on transmissivity, upwelling and downwelling radiances of the atmosphere. In the present study AFs were computed for the VHRR sensor through the MODTRAN simulations based upon varying atmospheric and surface inputs. The AFs were fitted with the atmospheric columnar water vapour content and a set of coefficients was derived for LST retrieval. The K1-LST derived with the SC algorithm was validated with (a) in situ measurements at two sites located in western parts of India and (b) the MODIS LST products. Comparison of K1-LST with the in situ measurements demonstrated that SC algorithm was successful in capturing the prominent diurnal variations of 283–332 K in the LST at desert and agriculture experimental sites with a rmse of 1.6 K and 2.7 K, respectively. Inter comparison of K1-LST and MODIS LST showed a reasonable agreement between these two retrievals up to LST of 300 K, however a cold bias up to 7.9 K was observed in MODIS LST for higher LST values (310–330 K) over the hot desert region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号