首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Abstract

We investigated global axisymmetric (m = 0) and non-axisymmetric (m = 1) modes of magnetic fields generated by the galactic dynamo including the α2-dynamo. The α2-dynamo is responsible for the field generation in the central region of galaxies where the shear of galactic rotation is weak (e.g. M51). The highest growth rate of m = 1 modes is always smaller than that of m = 0 modes; thus m = 1 modes of the standard galactic dynamo cannot explain the dominance of the bisymmetric fields in spiral galaxies. Radial extent of each m = 1 mode is too narrow to reproduce the observed bisymmetric structure extending over a disk.  相似文献   

2.
Abstract

We study the nonlinear asymptotic thin disc approximation to the mean field dynamo equations, as applicable to spiral galaxies. The circumstances in which sharp magnetic field structures (fronts) can propagate radially are investigated, and an expression for the speed of propagation derived. We find that the speed of an interior front is proportional to η//R ? (where η is the diffusivity and Rt the galactic radius), whereas an exterior front moves with speed of order , where γ is the local growth rate of the dynamo. Numerical simulations are presented, that agree well with our asymptotic results. Further, we perform numerical experiments using the 'no-z' approximation for thin disc dynamos, and show that the propagation of magnetic fronts in this approximation can also be understood in terms of our asymptotic results.  相似文献   

3.
We argue that global magnetic field reversals similar to those observed in the Milky Way occur quite frequently in mean-field galactic dynamo models that have relatively strong, random, seed magnetic fields that are localized in discrete regions. The number of reversals decreases to zero with reduction of the seed strength, efficiency of the galactic dynamo and size of the spots of the seed field. A systematic observational search for magnetic field reversals in a representative sample of spiral galaxies promises to give valuable information concerning seed magnetic fields and, in this way, to clarify the initial stages of galactic magnetic field evolution.  相似文献   

4.
Abstract

We discuss recent developments in the theory of large-scale magnetic structures in spiral galaxies. In addition to a review of galactic dynamo models developed for axisymmetric disks of variable thickness, we consider the possibility of dominance of non-axisymmetric magnetic modes in disks with weak deviations from axial symmetry. Difficulties of straightforward numerical simulation of galactic dynamos are discussed and asymptotic solutions of the dynamo equations relevant for galactic conditions are considered. Theoretical results are compared with observational data.  相似文献   

5.
Abstract

The observational facts about magnetic fields in galactic halos are reviewed. The existence, origin and significance of poloidal field components are described. Observational evidence that magnetic fields channel winds from active galactic centres is discussed. Field strengths adduced from the radio polarizations of edge-on galaxies are given. Priorities for future research are suggested.  相似文献   

6.
Abstract

In order to obtain a better insight into the excitation conditions of magnetic fields in flat objects, such as galaxies, we have calculated critical dynamo numbers of different magnetic field modes for spherical dynamos with a flat α-effect distribution. A simple but realistic approximation formula for the rotation curve is employed. In most cases investigated a stationary quadrupole-type solution is preferred. This is a consequence of the flat distribution of the α-effect. Non-axisymmetric fields are in all cases harder to excite than axisymmetric ones. This seems to be the case particularly for flat objects in combination with a realistic rotation curve for galaxies. The question of whether non-axisymmetric (bisymmetric) fields, which are observed in some galaxies, can be explained as dynamos generated by an axisymmetric αω-effect is therefore still open.  相似文献   

7.
In the present project we investigate the evolution of a three-dimensional (3D), large-scale galactic magnetic field under the influence of gas flows in spiral arms and in the presence of dynamo action. Our principal goal is to check how the dynamical evolution of gaseous spiral arms affects the global magnetic field structure and to what extent our models could explain the observed spiral patterns of polarization B-vectors in nearby galaxies. A two-step scheme is used: the N-body simulations of a two-component, self-gravitating disk provide the time-dependent velocity fields which are then used as the input to solve the mean-field dynamo equations. We found that the magnetic field is directly influenced by large-scale non-axisymmetric density wave flows yielding the magnetic field locally well-aligned with gaseous spiral arms in a manner similar to that discussed already by Otmianowska-Mazur et al. 1997. However, an additional field amplification, introduced by a non-zero -term in the dynamo equations, is required to cause a systematic increase of magnetic energy density against the diffusive losses. Our simulated magnetic fields are also used to construct the models of a high-frequency (Faraday rotation-free) polarized radio emission accounting for effects of projection and limited resolution, thus suitable for direct comparisons with observations.  相似文献   

8.
Abstract

We discuss the steady states of the αω-dynamo in a thin disc which arise due to α-quenching. Two asymptotic regimes are considered, one for the dynamo numberD near the generation thresholdD 0, and the other for |D| ? 1. Asymptotic solutions for |D—D 0| ? |D 0| have a rather universal character provided only that the bifurcation is supercritical. For |D| ? 1 the asymptotic solution crucially depends on whether or not the mean helicity α, as a function ofB, has a positive root (hereB is the mean magnetic field). When such a root exists, the field value in the major portion of the disc is O(l), while near the disc surface thin boundary layers appear where the field rapidly decreases to zero (if the disc is surrounded by vacuum). Otherwise, when α = O(|B|?s) for |B| → ∞, we demonstrate that |B| = O(|D|1/s ) and the solution is free of boundary layers. The results obtained here admit direct comparison with observations of magnetic fields in spiral galaxies, so that an appropriate model of nonlinear galactic dynamos hopefully could be specified.  相似文献   

9.
A nonlinear mean field dynamo in turbulent disks and spherical shells is discussed. We use a nonlinearity in the dynamo which includes the effect of delayed back-reaction of the mean magnetic field on the magnetic part of the — effect. This effect is determined by an evolutionary equation. The axisymmetric case is considered. An analytical expression (in a single-mode approximation) is derived which gives the magnitude of the mean magnetic field as a function of rotation and the parameters for turbulent disks. The value obtained for the mean magnetic field is in agreement with observations for galaxies.  相似文献   

10.
Abstract

The asymptotic and the no-z approximation methods of solving the axisymmetric mean field αΩ dynamo equation in a galactic disc are compared. The behaviour of the solutions is explored in both the linear and nonlinear regimes for a variety of dynamo parameters and two different rotation curves. The solutions obtained from the two different approaches are found to be in good agreement.  相似文献   

11.
This paper gives a short overview of the observational results on galactic magnetic fields. Interstellar magnetic fields, as deduced from multi-frequency polarization observations, show a well-ordered structure largely following the spiral arms. In some galaxies an axisymmetric spiral pattern dominates (the field being directed inwards), while others exhibit a dominant bisymmetric spiral field or mixed modes, as predicted from non-linear dynamo theory. As long as star formation activity is low, the magnetic fields are rather regular. Strong star formation leads to turbulent cloud motions and supernova explosions, which tangle the field, so that the radio emission is only weakly polarized. As a consequence the highest fractional polarizations and polarized intensities at centimeter wavelengths are found in interarm regions. At decimeter wavelengths, galactic disks become optically thick for polarized emission. In NGC 6946 the regular field is concentrated in narrow magnetic arms located in between the optical spiral arms. The field cannot simply be frozen into the gas and oriented by a density-wave flow. A galactic dynamo may provide a stable spiral pattern of the field, but non-axisymmetric models are still being developed.  相似文献   

12.
Abstract

In order to show that aperiodic magnetic cycles, with Maunder minima, can occur naturally in nonlinear hydromagnetic dynamos, we have investigated a simple nonlinear model of an oscillatory stellar dynamo. The parametrized mean field equations in plane geometry have a Hopf bifurcation when the dynamo number D=1, leading to Parker's dynamo waves. Including the nonlinear interaction between the magnetic field and the velocity shear results in a system of seven coupled nonlinear differential equations. For D>1 there is an exact nonlinear solution, corresponding to periodic dynamo waves. In the regime described by a fifth order system of equations this solution remains stable for all D and the velocity shear is progressively reduced by the Lorentz force. In a regime described by a sixth order system, the solution becomes unstable and successive transitions lead to chaotic behaviour. Oscillations are aperiodic and modulated to give episodes of reduced activity.  相似文献   

13.
We present simulations of the 3D nonlinear induction equation in order to investigate the temporal evolution of large-scale magnetic fields in spiral galaxies. Our model includes differential rotation, ambipolar diffusion and, based on small-scale turbulence, eddy diffusivity and the tensorial -effect with magnetic feedback. The nonaxisymmetric spiral pattern and – if considered – the vertical stratification of the galaxy are represented in its density and turbulence profile. Neglecting vertical stratification the lifetime and geometry of an initial magnetic field depend on the correlation time of interstellar turbulence corr . Short correlation times increase the lifetime of the initial magnetic field, but the field is rapidly wound up. Its pitch-angles develop to zero. The magnetic field has disappeared after at most 1 to 1.5 Gyr. A resonance like phenomenon is found by tuning the pattern velocity of the galactic spiral. The simulations then show an exceptional amplification of the magnetic field in the case that the pattern speed and a magnetic drift velocity have similar values. Considering a vertical stratification we achieve sufficiently long living grand-designed magnetic fields excited by dynamo action. The behaviour and geometry of the resulting field is again significantly influenced by the correlation time corr . Small values of corr lead to axisymmetric fields with small pitch-angles and field-concentration between the spiral arms. Increasing the correlation time the solutions show larger pitch-angles; and depending on very large correlation times the galactic dynamo rather generates fields clearly within the spiral arms and having a bisymmetric structure.  相似文献   

14.
Abstract

Evidence from radio polarization measurements is reviewed that indicates that most galactic magnetic field structures fall into one of two categories: axisymmetric spiral and bisymmetric spiral. The resultant challenges to dynamo theorists is stated. Estimates of the magnetic field strengths based on equipartition of field and cosmic ray energies are given, but deviations from equipartition are inferred. Possible goals for future research are suggested.  相似文献   

15.
In Kim et al. (Kim, E., Hughes, D.W. and Soward, A.M., “An investigation into high conductivity dynamo action driven by rotating convection”, Geophys. Astrophys. Fluid Dynam. 91, 303–332 ().) we investigated kinematic dynamo action driven by rapidly rotating convection in a cylindrical annulus. Here we extend this work to consider self-consistent nonlinear dynamo action in which the back-reaction of the Lorentz force on the flow is taken into account. In particular, we investigate, as a function of magnetic Prandtl number, the evolution of an initially weak magnetic field in two different types of convective flow – one chaotic and the other integrable. On saturation, the latter shows a systematic dependence on the magnetic Prandtl number whereas the former appears not to. In addition, we show how, in keeping with the findings of Cattaneo et al. (Cattaneo, F., Hughes, D.W. and Kim, E., “Suppression of chaos in a simplified nonlinear dynamo model”, Phys. Rev. Lett. 76, 2057–2060 ().), saturation of the growth of the magnetic field is brought about, for the originally chaotic flow, by a strong suppression of chaos.  相似文献   

16.
Abstract

Observations are reviewed that indicate the existence of rotating rings in a number of galaxies that possess poloidal magnetic fields in their nuclear regions, including our own Galaxy. Jets from these, possibly aligned with the poloidal field, may also be present. The role of these rings in dynamo processes is briefly discussed.  相似文献   

17.
Abstract

The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of the induced magnetic field. Two sources of instability are found to occur in the intermediate field regime M ~ T 1/12, where M and T are the Hartmann and Taylor numbers. On the time scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of the convection by the magnetic field. On a faster time scale a dynamic instability related to MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure of this dynamo is unstable to virtual increases in the magnetic field energy.

In an attempt to model stabilization of the dynamo in a strong-field regime we consider two approximations. In the first, a truncated expansion in three-dimensional plane waves is studied numerically. A second approach utilizes an ad hoc set of ordinary differential equations which contains many of the features of convection dynamos at all field energies. Both of these models exhibit temporal intermittency of the dynamo effect.  相似文献   

18.
Abstract

In this paper a method for solving the equation for the mean magnetic energy <BB> of a solar type dynamo with an axisymmetric convection zone geometry is developed and the main features of the method are described. This method is referred to as the finite magnetic energy method since it is based on the idea that the real magnetic field B of the dynamo remains finite only if <BB> remains finite. Ensemble averaging is used, which implies that fields of all spatial scales are included, small-scale as well as large-scale fields. The method yields an energy balance for the mean energy density ε ≡ B 2/8π of the dynamo, from which the relative energy production rates by the different dynamo processes can be inferred. An estimate for the r.m.s. field strength at the surface and at the base of the convection zone can be found by comparing the magnetic energy density and the outgoing flux at the surface with the observed values. We neglect resistive effects and present arguments indicating that this is a fair assumption for the solar convection zone. The model considerations and examples presented indicate that (1) the energy loss at the solar surface is almost instantaneous; (2) the convection in the convection zone takes place in the form of giant cells; (3) the r.m.s. field strength at the base of the solar convection zone is no more than a few hundred gauss; (4) the turbulent diffusion coefficient within the bulk of the convection zone is about 1014cm2s?1, which is an order of magnitude larger than usually adopted in solar mean field models.  相似文献   

19.
Inverse dynamo theory seeks to gain information about the motion of a liquid conductor from measurements of the magnetic field in the surrounding vacuum. We consider here a highly simplified model problem, namely a steady α2-dynamo in plane geometry with an α-field varying only in the z-direction normal to the conductor–vacuum interface. Based on perturbation theory about constant-α solutions, we find as many integral conditions on α(z) as modes are present in the vacuum field. This result is corroborated by the complete solution of a special case.  相似文献   

20.
Abstract

We consider the turbulent dynamo action in a differentially rotating flow by making use of a kinematic approach when the effect of a generated magnetic field on turbulent motions is neglected. The mean electromotive force is calculated in a quasilinear approximation. Differential rotation can stretch turbulent magnetic field lines and break the symmetry of turbulence in such a way that turbulent motions become suitable for the generation of a large scale magnetic field. The presence of shear changes the type of an equation governing the mean magnetic field. Due to shear stresses the mean magnetic field can be generated by a turbulent dynamo action even in a uniform turbulence. The growth rate depends on the length scale of the mean field being faster for the field with a smaller length scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号