首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In a traditional analytical method, the convective features of Earth’s mantle have been inferred from surface signatures obtained by the geodynamic model only with depth-dependent viscosity structure. The moving and subducting plates, however, bring lateral viscosity variations in the mantle. To clarify the effects of lateral viscosity variations caused by the plate-tectonic mechanism, I have first studied systematically instantaneous dynamic flow calculations using new density-viscosity models only with vertical viscosity variations in a three-dimensional spherical shell. I find that the geoid high arises over subduction zones only when the vertical viscosity contrast between the upper mantle and the lower mantle is O(103) to O(104), which seems to be much larger than the viscosity contrast suggested by other studies. I next show that this discrepancy may be removed when I consider the lateral viscosity variation caused by the plate-tectonic mechanism using two-dimensional numerical models of mantle convection with self-consistently moving and subducting plates, and suggest that the observed geoid anomaly on the Earth’s surface is significantly affected by plate-tectonic mechanism as a first-order effect.  相似文献   

2.
An examination of the westward drift of the geomagnetic field indicates that the drift velocity is almost independent of latitude, suggesting a uniform rigid rotation of spherical shape. When the geomagnetic field is separated into standing and drifting components and expressed in a spherical harmonic series, a lack of sectorial terms is noted in the standing field. It is shown that these features are well explained by a stratified core model.The core is supposed to be stratified near the surface where toroidal fluid motions are predominant. In the deeper part, the fluid motion is two-dimensional, forming Taylor columns. A simplified core model is assumed to represent these features, in which the core is divided into two parts, an outer spherical shell that rotates westwards at a uniform rate of 0.3° y?1 and a central sphere in which the two-dimensional columnar motions reside. The toroidal motions in the outer spherical interact with the dipole field to induce the drifting field, whereas the columnar motions generate the standing field through interaction with a toroidal field. It follows that a small velocity as 5 × 10?3 cm s?1 for the stratified motion is sufficient to create the observed drifting field.  相似文献   

3.
4.
Seismic studies of the lowermost mantle suggest that the core-mantle boundary (CMB) region is strongly laterally heterogeneous over both local and global scales. These heterogeneities are likely to be associated with significant lateral viscosity variations that may influence the shape of the long-wavelength non-hydrostatic geoid. In the present paper we investigate the effect of these lateral viscosity variations on the solution of the inverse problem known as the inferences of viscosity from the geoid. We find that the presence of lateral viscosity variations in the CMB region can significantly improve the percentage fit of the predicted data with observations (from 42 to 70% in case of free-air gravity) while the basic characterisics of the mantle viscosity model, namely the viscosity increase with depth and the rate of layering, remain more or less the same as in the case of the best-fitting radially symmetric viscosity models. Assuming that viscosity is laterally dependent in the CMB region, and radially dependent elsewhere, we determine the largescale features of the viscosity structure in the lowermost mantle. The viscosity pattern found for the CMB region shows a high density of hotspots above the regions of higher-than-average viscosity. This result suggests an important role for petrological heterogeneities in the lowermost mantle, potentially associated with a post-perovskite phase transition. Another potential interpretation is that the lateral viscosity variations derived for the CMB region correspond in reality to lateral variations in the mechanical conditions at the CMB boundary or to large-scale undulations of a chemically distinct layer at the lowermost mantle.  相似文献   

5.
The splitting of the [100] dislocations of forsterite Mg2SiO4 is investigated in a hard-sphere model. Glissile splittings exist in (001) and the most energetically favorable is the one that does not involve cutting of SiO4 tetrahedra: [100] → [16, 19, 16 + [23, 0, 0] + [16, 19, 16 [100] screw dislocations are shown to be able to split simultaneously on (001) and (010) according to the reaction: [100] = [16, 136, 14] + [16, 19, 16] + [13, 0, θ] + [16, 136, 14] + [16, 16, 16] This sessile configuration is analogous to the one found for screw dislocations of body-centered cubic metals. It accounts forthe long rectilinear sessile screw segments commonly observed, in experimentally and naturally deformed olivine. A new creep model for the upper mantle is proposed, where recovery is controlled by cross-slip of screw dislocations instead of climb of edge dislocations. The creep law, fitted on the experimental results of the literature is: ??= 1.2 · 104 σ2exp ? [(125000 ? 11.7σ + PV1/RT]> (σ in bars) the activation volume for cross-slip is estimated and viscosity-depth curves are plotted. The proposed creep mechanism is grain-size independent and less non-Newtonian than the climb-controlled one; it is found to be dominant over the latter at stresses smaller than 100 bar.  相似文献   

6.
Surface wave analysis is usually applied as a 1D tool to estimate VS profiles. Here we evaluate the potential of surface wave analysis for the case of lateral variations. Lateral variations can be characterized by exploiting the data redundancy of the ground roll contained in multifold seismic data. First, an automatic processing procedure is applied that allows stacking dispersion curves obtained from different records and which retrieves experimental uncertainties. This is carried out by sliding a window along a seismic line to obtain an ensemble of dispersion curves associated to a series of spatial coordinates. Then, a laterally constrained inversion algorithm is adopted to handle 2D effects, although a 1D model has been assumed for the forward problem solution. We have conducted different tests on three synthetic data sets to evaluate the effects of the processing parameters and of the constraints on the inversion results. The same procedure, applied to the synthetic data, was then tested on a field case. Both the synthetic and field data show that the proposed approach allows smooth lateral variations to be properly retrieved and that the introduction of lateral constraints improves the final result compared to individual inversions.  相似文献   

7.
The viscosity of a series of six synthetic dacitic liquids, containing up to 5.04 wt% dissolved water, was measured above the glass transition range by parallel-plate viscometry. The temperature of the 1011 Pa s isokom decreases from 1065 K for the anhydrous liquid, to 864 K and 680 K for water contents of 0.97 and 5.04 wt% H2O. Including additional measurements at high temperatures by concentric-cylinder and falling-sphere viscometry, the viscosity (η) can be expressed as a function of temperature and water content w according to: where η is in Pa s, T is temperature in K, and w is in weight percent. Within the conditions of measurement, this parameterization reproduces the 76 viscosity data with a root-mean square deviation (RMSD) of 0.16 log units in viscosity, or 7.8 K in temperature. The measurements show that water decreases the viscosity of the dacitic liquids more than for andesitic liquids, but less than for rhyolites. At low temperatures and high water contents, andesitic liquids are more viscous than the dacitic liquids, which are in turn more viscous than rhyolitic liquids, reversing the trend seen for high temperatures and low water contents. This suggests that the relative viscosity of different melts depends on temperature and water content as much as on bulk melt composition and structure. At magmatic temperatures, rhyolites are orders of magnitude more viscous than dacites, which are slightly more viscous than andesites. During degassing, all three liquids undergo a rapid viscosity increase at low water contents, and both dacitic and andesitic liquids will degas more efficiently than rhyolitic liquids. During cooling and differentiation, changing melt chemistry, decreasing temperature and increasing crystal content all lead to increases in the viscosity of magma (melt plus crystals). Under closed system conditions, where melt water content can increase during crystallization, viscosity increases may be small. Conversely, viscosity increases are very abrupt during ascent and degassing-induced crystallization.  相似文献   

8.
Predictions of present day secular variations in the Earth's long wavelength geopotential driven by glacial isostatic adjustment (GIA) have previously been analyzed to infer the radial profile of mantle viscosity and to constrain ongoing cryospheric mass balance. These predictions have been based on spherically symmetric Earth models. We explore the impact of lateral variations in mantle viscosity using a new finite-volume formulation for computing the response of 3-D Maxwell viscoelastic Earth models. The geometry of the viscosity field is constrained from seismic-to-mographic images of mantle structure, while the amplitude of the lateral viscosity variations is tuned by a free parameter in the modeling. We focus on the zonal ? harmonics for degrees = 2,…,8 and demonstrate that large-scale lateral viscosity variations of two to three orders of magnitude have a modest, 5-10%, impact on predictions of 2. In contrast, predictions of higher degree harmonics show a much greater sensitivity to lateral variation in viscosity structure. We conclude that future analyses of secular trends (for degree ? > 2) estimated from ongoing (GRACE, CHAMP) satellite missions must incorporate GIA predictions based on 3-D viscoelastic Earth models.  相似文献   

9.
The rheology of dry polycrystalline olivine is examined by adopting a hyperbolic sine flow law (which reduces to a power law below 3 kbars) for high stress behavior, and a model for diffusion accommodated, coherent, grain boundary sliding (structural superplastic creep) for low stress behavior. The model for superplastic creep gives a linear relation between stress and strain rate and is consistent with the behavior of polycrystalline olivine during ductile faulting experiments (Post, 1973). For any given stable grain size, linear superplastic creep is promoted by relatively low stress and temperature. For a 1 -cm grain size and a homologous temperature between 0.6 and 0.8, superplastic creep dominates below transition stresses between 402 and 25 bars, respectively. Transition stresses are higher for smaller grain size and lower temperature. If grain size is stress dependent, superplastic creep is non-linear and dominates above a stress of 300 bars. Below that stress, relatively lower temperatures promote superplastic creep. Grain size may be stabilized by either physical or kinetic inhibition of grain growth, thereby allowing linear superplastic creep in the mantle. Results suggest that superplastic creep can dominate in most of the upper mantle except possibly for the asthenosphere where homologous temperatures are maximal and hyperbolic sine law creep can dominate. Mantle diapirism is at least in part accomplished by superplastic flow above and along the margins of the rising diapir.  相似文献   

10.
The geochemical study of the Earth's mantle provides important constraints on our understanding of the formation and evolution of Earth, its internal structure, and the mantle dynamics. The bulk Earth composition is inferred by comparing terrestrial mantle rocks with chondrites, which leads to the chondritic Earth model. That is, Earth has the same relative proportions of refractory elements as that in chondrites, but it is depleted in volatiles. Ocean island basalts(OIB) may be produced by mantle plumes with possible deep origins; consequently, they provide unique opportunity to study the deep Earth. Isotopic variations within OIB can be described using a limited number of mantle endmembers, such as EM1, EM2 and HIMU, and they have been used to decipher important mantle processes. Introduction of crustal material into the deep mantle via subduction and delamination is important in generating mantle heterogeneity; however, there is active debate on how they were sampled by mantle melting, i.e.,the role of olivine-poor lithologies in the OIB petrogenesis. The origin and location of high 3He/4He mantle remain controversial,ranging from unprocessed(or less processed) primitive material in the lower mantle to highly processed materials with shallow origins, including ancient melting residues, mafic cumulates under arcs, and recycled hydrous minerals. Possible core-mantle interaction was hypothesized to introduce distinctive geochemical signatures such as radiogenic 186 Os and Fe and Ni enrichment in the OIB. Small but important variations in some short-lived nuclides, including 142 Nd, 182 W and several Xe isotopes, have been reported in ancient and modern terrestrial rocks, implying that the Earth's mantle must have been differentiated within the first 100 Myr of its formation, and the mantle is not efficiently homogenized by mantle convection.  相似文献   

11.
Since August 2000, we have recorded the total intensity of the geomagnetic field at the summit area of Kuchi-erabu-jima volcano, where phreatic eruptions have repeatedly occurred. A time series analysis has shown that the variations in the geomagnetic field since 2001 have a strong relationship to an increase in volcanic activity. These variations indicate thermal demagnetization of the subsurface around the presently active crater. The demagnetization source for the early variations, until summer 2002, was estimated at about 200 m below sea level. For the variations since 2003, the source was modeled on the basis of the expansion of a uniformly magnetized ellipsoid. The modeling result showed that the source is located at 300 m above sea level beneath the crater. We carried out an audio-frequency magnetotelluric survey with the aim of obtaining a relation between the demagnetization source and the shallow structure of the volcano. A two-dimensional inversion applied to the data detected two good conductors, a shallow thin one which is restricted to a region around the summit area, while the other extends over the edifice at depths between 200 and 800 m. These conductors are regarded as clay-rich layers with low permeability, which were assumed to be generated through hydrothermal alteration. The demagnetization source for the early variations was possibly located at the lower part of the deep conductor and the source after 2003 lies between the two conductors, where groundwater is considered to be abundant. Based on these results, as well as on seismological, geodetic, and geochemical information, we propose a heating process of the Kuchi-erabu-jima volcano. In the initial stage, high-temperature volcanic gases supplied from the deep-seated magma remained temporarily at the level around the lower part of the less permeable deep conductor since the ascent path had not yet been established. Then, when the pathway developed as a result of repeated earthquakes, it became possible for a massive flux of volcanic gases to ascend through the conductor. The high temperature gases reached the aquifer located above the conductor and the heat was efficiently transported to the surrounding rocks through the groundwater. As a consequence, an abrupt increase of the gas flux and diffusion of the heat through the aquifer occurred and the high-temperature zone expanded. Since the high-temperature zone is located beneath another conductor, which acts as caprock, we assume that the energy of the phreatic explosion is accumulated there.  相似文献   

12.
Mean S-wave residuals from 46 earthquakes within and on the margins of the Tibetan Plateau exhibit systematic lateral variations that do not correlate well with elevation or with simple aspects of the geologic history. The earliest S waves come from earthquakes in western Tibet, the Karakorum, and the western Himalaya, and the latest come from earthquakes in north-central Tibet. Although S-waves from earthquakes in the Himalaya tend to be early, the east-west variation in residuals across Tibet is at least as large as the north-south difference between the Himalaya and northern Tibet. If the variations in residuals are a reflection of temperature variations in the upper mantle associated with convection, then upwelling beneath north-central Tibet seems to be flanked by downwelling in western, eastern, and probably southern Tibet. This convective flow might reflect the detachment and removal of thickened mantle lithosphere beneath Tibet.  相似文献   

13.
Mantle xenoliths brought up by Cenozoic volcanic rocks onto the earth‘s surface may provide direct information about the upper mantle beneath the volcanic region. This paper presents the study on mantle xenoliths collected from Haoti village, Dangchang County, Gansu Province, western China. The main purpose of the study is to gain an insight into the thermal structure and rbeology of the upper mantle beneath the region. The results show that the upper mantle of the region is composed mainly of spinel lherzolite at shallower depth (52-75km), and garnet iberzolite at greater depth (greater than 75km), instead of harzburgite and dunite as proposed by some previous studies. The upper mantle geotherm derived from the equilibrium temperatures and pressures of xenoliths from the region is lower than that of North China, and is somewhat closer to the Oceanic geotherm. The crust-mantle boundary is determined from the geotherm to be at about 52km, and the Moho seems to be the transition zone of lower crust material with spinel iberzolite. If we take 1280℃ as the temperature of the top of asthenosphere, then the fithospbere-asthenosphere boundary should be at about 120km depth. The differential stress of the upper mantle is determined by using recrystallized grain size piezometry, while the strain rate and equivalent viscosity are determined by using the high temperature flow law of peridotite. The differential stress, strain rate and viscosity profiles constructed on the basis of the obtained values indicate that asthenospberic diapir occurred in this region during the Cenozoic time, resulting in the corresponding thinning of the lithosphere. However, the scale and intensity of the diapir was significantly less than that occurring in the North China region. Moreover, numerous small-scale shear zones with localized deformation might occur in the iithospberic mantle, as evidenced by the extensive occurrence of xenoliths with tabular equigranular texture.  相似文献   

14.
断层活动不是孤立的,一条断层的活动可能影响其他断层,并引起这些断层的活动,这些相互作用的断层称为关联断层.本文利用卫星热红外信息以南北地震构造带为例,分析了关联断层活动的时空变化,所使用的信息是经过处理的地表亮温残差低频分量TLOW.结果表明,在一定时段内研究区一些断层间除地震活动表现出相互呼应关系外,其地表亮温残差低频分量TLOW曲线相似,相关系数高,说明热红外信息与地震信息共同反映一个地区断层的关联活动.此外,也存在单独由地表亮温残差低频分量TLOW相关表现断层关联活动的情形,即断层间无地震活动的呼应关系,但也存在TLOW曲线的相关性,同样显示关联断层的相互作用.对TLOW的时空过程分析表明,关联活动组合可随时间发生变化.例如,1988~1994年间红河断裂与澜沧-耿马断裂、金沙江断裂等构成关联活动组合,1994~1998年又与小金河断裂、安宁河-小江断裂构成关联活动组合,这样的时空变化过程可能是地壳应力场重新分配的反映.本文的研究结果证明,卫星热红外信息有望成为研究断层相互作用的一个新的独立物理量,并将对地震动力学和构造物理学的发展有重要意义.  相似文献   

15.
大陆岩石圈流变研究进展与高温高压流变实验现状   总被引:17,自引:4,他引:13  
大陆岩石圈类似于“三明治”的多层流变结构已经被广泛接受,并用于大陆动力学研究的各方面.然而近年来地震资料和高温高压流变实验结果表明,大陆岩石圈流变可能不是单一模式,流变结构具有多样性,而下地壳流变特性是其中最复杂的层次,这不仅受下地壳成分和结构本身的非均匀控制,而且与其含水程度相关.高温高压流变实验已经积累了大量的数据,但基性岩流变实验目前仍然处于数据积累阶段,缺乏系统性,特别是缺少含水基性岩的流变实验结果,因此,加强干的和含水的基性岩流变实验研究是深入认识下地壳岩石流变必不可少的手段和方法之一.  相似文献   

16.
Efectiverelaxationtimeandviscosityoftheearthinferedfromthepostseismicverticaldeformationsofthe1990MS=7.0GongheearthquakeQI...  相似文献   

17.
Summary From numerical solutions of a wind-driven homogeneous ocean model, anegative lateral eddy viscosity of the order 104 cm2 sec–1 is inferred from the large-scale time-dependent currents in the interior of an enclosed shallow basin. The transient Rossby waves in this region produce a systematic convergence of eddy momentum at the latitude of the maximum average eastward current, and thus effect a transfer of zonal momentum from the large-scale eddies to the mean flow. In this sense they are analogous to the Rossby waves in the atmospheric general circulation, and it is speculated that such waves may help to maintain the mean zonal ocean currents. Although this negative viscosity induced by the large-scale transients is relatively small compared with the prescribed lateral viscosity of 108 cm2 sec–1 and should be given a quite different physical interpretation, it is evidently an important viscous effect for the mean flow in the interior of the basin. The prescribed viscosity, on the other hand, is effective in controlling the model's simulated sub-grid scale dissipation, which occurs almost entirely in the nearby steady boundary currents.  相似文献   

18.
Reventador Volcano entered an eruptive phase in 2005 which included a wide variety of seismic and infrasonic activity. These are described and illustrated: volcano-tectonic, harmonic tremor, drumbeats, chugging and spasmodic tremor, long period and very long period events. The recording of this simultaneous activity on an array of three broadband, seismo-acoustic instruments provides detailed information of the state of the conduit and vent during this phase of volcanic eruption. Quasi-periodic tremor at Reventador is similar to that observed at other volcanoes and may be used as an indicator of vent aperture. Variations in the vibration modes of the volcano, frequency fluctuations and rapid temporal fluctuations suggest the influx of new material, choking of the vent and possible modification of the conduit geometry during explosions and effusion over a period of six weeks.  相似文献   

19.
Crustal receiver functions have been calculated from 128 events for two three-component broadband seismomenters located on the south coast (FOMA) and in the central High Plateaux (ABPO) of Madagascar. For each station, crustal thickness and V p /V s ratio were estimated from H- κ plots. Self-consistent receiver functions from a smaller back-azimuthal range were then selected, stacked and inverted to determine shear wave velocity structure as a function of depth. These results were corroborated by guided forward modeling and by Monte Carlo error analysis. The crust is found to be thinner (39 ± 0.7 km) beneath the highland center of Madagascar compared to the coast (44 ± 1.6 km), which is the opposite of what would be expected for crustal isostasy, suggesting that present-day long wavelength topography is maintained, at least in part, dynamically. This inference of dynamic support is corroborated by shear wave splitting analyses at the same stations, which produce an overwhelming majority of null results (>96 %), as expected for vertical mantle flow or asthenospheric upwelling beneath the island. These findings suggest a sub-plate origin for dynamic support.  相似文献   

20.
朱涛  马宗晋  冯锐 《地球物理学报》2006,49(5):1347-1358
建立了三维黏度扰动下的变黏度地幔对流模型,并提供了在引入地幔的三维地震波速度结构下相应的求解方法. 依此反演了瑞利数Ra = 106时,两种不同边界条件下的极、环型场对流图像,这有助于深化对地幔物质流动和大地构造运动的深部动力学过程的认识和理解. 研究结果表明,不但地幔浅部的极型场对流图像显示出了与大地构造运动的相关性并揭示了其深部动力学过程,更重要的是,地幔浅部的环型场对流图像首次为我们认识和理解板块构造的水平与旋转运动提供了重要的信息:环型场速度剖面中在赤道附近存在一条大致南东东—北西西向的强对流条带,可能与环赤道附近大型剪切带的形成相关,进而表明可能是该带强震发生的深部动力学背景;在南北半球存在的旋转方向相反的对流环表明它们整体上可能存在差异旋转.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号