首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A second-order libration solution of theIdeal Resonance Problem is construeted using a Lie-series perturbation technique. The Ideal Resonance Problem is characterized by the equations $$\begin{gathered} - F = B(x) + 2\mu ^2 A(x)sin^2 y, \hfill \\ \dot x = - Fy,\dot y = Fx, \hfill \\ \end{gathered} $$ together with the property thatB x vanishes for some value ofx. Explicit expressions forx andy are given in terms of the mean elements; and it is shown how the initial-value problem is solved. The solution is primarily intended for the libration region, but it is shown how, by means of a substitution device, the solution can be extended to the deep circulation regime. The method does not, however, admit a solution very close to the separatrix. Formulae for the mean value ofx and the period of libration are furnished.  相似文献   

2.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

3.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

4.
It is assumed that the dynamical system can be represented by equations of the form $$\begin{gathered} \dot x = \varepsilon _i f_i (x,y) \hfill \\ \dot y = u(x,y) + \varepsilon _i g_i (x,y) \hfill \\ \end{gathered} $$ as this is the case for the Lagrange equations in celestial mechanics. The perturbation functionsf i andg i may also depend on the timet. The fast angular variabley is now taken as independent variable. Using perturbation theory and expanding in Taylor series the differential equations for the zeroth, first, second, ... order approximations are obtained. In the stroboscopic method in particular the integration is performed analytically over one revolution, say from perigee to perigee. By the rectification step applied tox andt, the initial values for the next revolution are obtained. It is shown how the second order terms can be determined for the various perturbations occurring in satellite theory. The solution constructed in this way remains valid for thousands of revolutions. An important feature of the method is the small amount of computing time needed compared with numerical integration.  相似文献   

5.
An Extended Resonance Problem is defined by the Hamiltonian, $$F = B(y) + 2\mu ^2 A(y)[\sin x + \lambda (y)]^2 \mu<< 1,\lambda = O(\mu ).$$ It is noted here that the phase-plane trajectories exhibit adouble libration, enclosing two centers, for the initial conditions of motion satisfying the inequality $$1 - |\lambda |< |\alpha |< 1 + |\lambda |,$$ where α is the usualresonance parameter. A first order solution for the case of double libration is constructed here by a generalization of the procedure previously used in solving the Ideal Resonance Problem with λ=0. The solution furnishes a reference orbit for a Perturbed Ideal Problem if a double libration occurs as a result of perturbations.  相似文献   

6.
The Ideal Resonance Problem is defined by the Hamiltonian $$F = B(y) + 2\varepsilon A(y) \sin ^2 x,\varepsilon \ll 1.$$ The classical solution of the Problem, expanded in powers of ε, carries the derivativeB′ as a divisor and is, therefore, singular at the zero ofB′, associated with resonance. With α denoting theresonance parameter, defined by $$\alpha \equiv - B'/|4AB''|^{1/2} \mu ,\mu = \varepsilon ^{1/2} ,$$ it is shown here that the classical solution is valid only for $$\alpha ^2 \geqslant 0(1/\mu ).$$ In contrast, the global solution (Garfinkelet al., 1971), expanded in powers ofμ1/2, removes the classical singularity atB′=0, and is valid for all α. It is also shown here that the classical solution is an asymptotic approximation, for largeα 2, of the global solution expanded in powers ofα ?2. This result leads to simplified expressions for resonancewidth and resonantamplification. The two solutions are compared with regard to their general behavior and their accuracy. It is noted that the global solution represents a perturbed simple pendulum, while the classical solution is the limiting case of a pendulum in a state offast circulation.  相似文献   

7.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

8.
The Ideal Resonance Problem in its normal form is defined by the Hamiltonian (1) $$F = A (y) + 2B (y) sin^2 x$$ with (2) $$A = 0(1),B = 0(\varepsilon )$$ where ? is a small parameter, andx andy a pair of canonically conjugate variables. A solution to 0(?1/2) has been obtained by Garfinkel (1966) and Jupp (1969). An extension of the solution to 0(?) is now in progress in two papers ([Garfinkel and Williams] and [Hori and Garfinkel]), using the von Zeipel and the Hori-Lie perturbation methods, respectively. In the latter method, the unperturbed motion is that of a simple pendulum. The character of the motion depends on the value of theresonance parameter α, defined by (3) $$\alpha = - A\prime /|4A\prime \prime B\prime |^{1/2} $$ forx=0. We are concerned here withdeep resonance, (4) $$\alpha< \varepsilon ^{ - 1/4} ,$$ where the classical solution with a critical divisor is not admissible. The solution of the perturbed problem would provide a theoretical framework for an attack on a problem of resonance in celestial mechanics, if the latter is reducible to the Ideal form: The process of reduction involves the following steps: (1) the ration 1/n2 of the natural frequencies of the motion generates a sequence. (5) $$n_1 /n_2 \sim \left\{ {Pi/qi} \right\},i = 1, 2 ...$$ of theconvergents of the correspondingcontinued fraction, (2) for a giveni, the class ofresonant terms is defined, and all non-resonant periodic terms are eliminated from the Hamiltonian by a canonical transformation, (3) thedominant resonant term and itscritical argument are calculated, (4) the number of degrees of freedom is reduced by unity by means of a canonical transformation that converts the critical argument into an angular variable of the new Hamiltonian, (5) the resonance parameter α (i) corresponding to the dominant term is then calculated, (6) a search for deep resonant terms is carried out by testing the condition (4) for the function α(i), (7) if there is only one deep resonant term, and if it strongly dominates the remaining periodic terms of the Hamiltonian, the problem is reducible to the Ideal form.  相似文献   

9.
If a dynamical system ofN degrees of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 , \mu<< 1.$$ Herey is the momentum-vectory k withk=1, 2,...,N, andx 1 is thecritical argument. A first-orderglobal solution,x 1(t) andy 1(t), for theactive variables of the problem, has been given in Garfinkelet al. (1971). Sincex k fork>1 are ignorable coordinates, it follows that $$y_\kappa = const., k > 1.$$ The solution is completed here by the construction of the functionsx k(t) fork>1, derivable from the new HamiltonianF′(y′) and the generatorS(x, y′) of the von Zeipel canonical transformation used in the cited paper. The solution is subject to thenormality condition, derived in a previous paper fork=1, and extended here to 2≤kN. It is shown that the condition is satisfied in the problem of the critical inclination provided it is satisfied fork=1.  相似文献   

10.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

11.
It is shown here that many problems of libration in celestial mechanics can be reduced to a perturbation of anintermediary defined by the Hamiltonian $$F = B\left( y \right) + 2\mu ^2 A\left( y \right)f\left( x \right).$$ This generalization of the Ideal Resonance Problem, with a periodic functionf(x) replacing sin2 x, is solved here toO(μ 2) by an algorithm that is essentially the same as the one used in the original formulation. The solution is of the formx=x(u), u=u(t), y=y(x), with the functionx(u) commonly involving the inversion of a hyperelliptic integralu(x), evaluated by quadrature. Libration may be simple or multiple, depending on the nature of the functionf(x) and on the initial conditions. Double libration is illustrated here by the horseshoe-shaped orbits enclosing two libration centers.  相似文献   

12.
For the conservative, two degree-of-freedom system with autonomous potential functionV(x,y) in rotating coordinates; $$\dot u - 2n\upsilon = V_x , \dot \upsilon + 2nu = V_y $$ , vorticity (v x -u y ) is constant along the orbit when the relative velocity field is divergence-free such that: $$u(x,y,t) = \psi _y , \upsilon (x,y,t) = - \psi _x $$ . Unlike isoenergetic reduction using the Jacobi, integral and eliminating the time,non-singular reduction from fourth to second-order occurs when (u,v) are determined explicitly as functions of their arguments by solving for ψ (x, y, t). The orbit function ψ satisfies a second-order, non-linear partial differential equation of the Monge Ampere type: $$2(\psi _{xx} \psi _{yy} - \psi _{xy}^2 ) - 2(\psi _{xx} + \psi _{yy} ) + V_{xx} + V_{yy} = 0$$ . Isovortical orbits in the rotating frame arenot level curves of ψ because it contains time explicitly due to coriolis effects. Rather, (x, y) coordinates along the orbit are obtained, from (u, v) either by numerical integration of the kinematic equations, or by partial differentiation of the Legendre transform ? of ψ. In the latter case, ? is shown to satisfy a non-linear, second-order partial differential equation in three independent variables, derived from the Monge-Ampere Equation. Complete reduction to quadrature is possible when space-time symmetries exist, as in the case of central force motion.  相似文献   

13.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

14.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

15.
In this paper we discuss a perturbed extension of hyperbolic twist mappings to a 3-dimensional measure-preserving mapping $$\begin{array}{*{20}c} {T:\left\{ {\begin{array}{*{20}c} {x_{n + 1} = s(x_n \cos \varphi _n - y_n \sin \varphi _n ) + A\cos z_n ,} \\ {y_{n + 1} = s^{ - 1} (x_n \sin \varphi _n + y_n \cos \varphi _n ) + B\sin z_n ,} \\ {z_{n + 1} = z_n + C\cos (x_{n + 1} + y_{n + 1} ) + D,(\bmod 2\pi )} \\ \end{array} } \right.} \\ {\varphi _n = (x_n^2 + y_n^2 )^k } \\ \end{array}$$ wheres, k are parameters andA, B, C, D are perturbation parameters. We find that the ordered regions near the fixed point of the hyperbolic twist mapping is destroyed by the perturbed extension more easily than the ones distant from it. The size of the ordered region decreases with increasing perturbation parameters and is insensitive to the parameterD for the same parametersA, B, C.  相似文献   

16.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

17.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

18.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

19.
The publication of the solution of the Ideal Resonance Problem (Garfinkelet al., 1971) has opened the way for a complete first-orderglobal theory of the motion of an artificial satellite, valid for all inclinations. Previous attempts at such a theory have been only partially successful. With the potential function restricted to $$V = - 1/r + J_2 P_2 (\sin \theta )/r^3 + J_4 P_4 (\sin \theta )/r^5 ,$$ the paper constructs aglobal solution of the first order in √J 2 for the Delaunay variablesG, g, h, l and for the coordinatesr, θ, and ?. As a check, it is shown that this solution includes asymptotically theclassical limit with the critical divisor 5 cos2 i?1. The solution is subject to thenormality condition $$eG^2 /(1 + \frac{{45}}{4}e^2 ) \geqslant O\left[ {\left| {\frac{1}{5}(J_2 + J_4 /J_2 )} \right|^{1/4} } \right],$$ which bounds the eccentricitye away from zero in deep resonance. A historical section orients this work with respect to the contributions of Hori (1960), Izsak (1962), and Jupp (1968).  相似文献   

20.
The ratio between the Earth's perihelion advance (Δθ) E and the solar gravitational red shift (GRS) (Δø s e)a 0/c 2 has been rewritten using the assumption that the Newtonian constant of gravitationG varies seasonally and is given by the relationship, first found by Gasanalizade (1992b) for an aphelion-perihelion difference of (ΔG)a?p . It is concluded that $$\begin{gathered} (\Delta \theta )_E = \frac{{3\pi }}{e}\frac{{(\Delta \phi _{sE} )_{A_0 } }}{{c^2 }}\frac{{(\Delta G)_{a - p} }}{{G_0 }} = 0.038388 \sec {\text{onds}} {\text{of}} {\text{arc}} {\text{per}} {\text{revolution,}} \hfill \\ \frac{{(\Delta G)_{a - p} }}{{G_0 }} = \frac{e}{{3\pi }}\frac{{(\Delta \theta )_E }}{{(\Delta \phi _{sE} )_{A_0 } /c^2 }} = 1.56116 \times 10^{ - 4} . \hfill \\ \end{gathered} $$ The results obtained here can be readily understood by using the Parametrized Post-Newtonian (PPN) formalism, which predicts an anisotropy in the “locally measured” value ofG, and without conflicting with the general relativity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号