首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few well-dated, quantitative Holocene temperature reconstructions exist from high-altitude sites in the Central Eastern Alps. Here, we present a chironomid-based quantitative reconstruction of mean July air temperatures (TJuly) throughout the Holocene for a remote high-mountain lake, Schwarzsee ob Sölden, situated above the treeline at 2796 m a.s.l. in the Austrian Alps. Applying a chironomid-temperature inference model developed from lakes of the Alpine region to a high-resolution chironomid record from the lake provides evidence for early Holocene (ca 10000–8600 cal yr BP) TJuly of up to 8.5 °C, i.e. >4 °C above the modern (1977–2006) mean July temperature. The reconstruction reveals the so-called ‘8.2-ka cold event’ centered at ca 8250–8000 cal yr BP with temperatures ca 3 °C below the early-Holocene thermal maximum. Rather warm (ca 6 °C) and productive conditions prevailed during ca 7900–4500 cal yr BP. The chironomid record suggests a climate transition between ca 5200 and 4500 cal yr BP to cooler TJuly. A distinct cooling trend is evident from ca 4500 until ca 2500 cal yr BP. Thereafter, the study site experienced its coldest conditions (around 4 °C or less) throughout the rest of the Holocene, with the exception of the warming trend during the late 20th century. Beside other factors, the Northern Hemisphere summer insolation seems to be the major driving force for the long-term trends in TJuly at high altitudes in the Eastern Alps. Due to the extreme location of the lake and the limited temperature range represented by the applied calibration data set, the chironomid-based temperature reconstruction fails to track phases of the late-Holocene climatic history with TJuly cooler than 4 °C. Further chironomid-based palaeoclimate model and down-core studies are required to address this problem, provide more realistic TJuly estimates from undisturbed high-altitude lakes in the Alps, and extract a reliable regional temperature signal.  相似文献   

2.
Icelandic and Norwegian chironomid calibration or training sets were merged to investigate whether a larger combined training set would be useful to apply to subfossil chironomid data from Iceland for periods such as the early Holocene, the Holocene Thermal Maximum and the Little Ice Age, when temperatures can be expected to be outside the current temperature range of the Icelandic training set. Following taxonomic harmonisation, the Icelandic and Norwegian data sets were compared before being merged to form a combined Norwegian-Icelandic training set. Analyses showed that it was biologically and statistically valid to merge the two data sets. The resulting combined inference model for mean July air temperature had improved performance statistics (r2jack = 0.87; RMSEPjack = 1.13) when compared to the best performing Icelandic model (r2jack = 0.61; RMSEPjack = 0.83), due to the longer environmental gradient covered (Icelandic 6–11 °C; combined 3.5–16 °C), and to the increased number of samples (Icelandic = 53 lakes; combined = 207 lakes) and taxa (Icelandic = 47 taxa; combined = 133 taxa) present within the combined training set. The inference models were applied to an early Holocene chironomid sequence from Vatnamýri, north Iceland, and a 450-year recent record from Myfluguvatn, north-west Iceland, to compare the reconstructions produced. The various inference models produced similar trends and patterns of temperature reconstruction, but the inference model based on the combined training set produced a larger range of reconstructed temperatures than the Icelandic model. It was found that different inference models produced more variation in the reconstruction than when different training sets were used. A comparison of the Myfluguvatn reconstructions with meteorological observations showed that the combined Norwegian–Icelandic inference model produced more reliable results than the Icelandic or Norwegian inference models alone.  相似文献   

3.
《Quaternary Science Reviews》2007,26(19-21):2420-2437
Lateglacial environments at Hijkermeer, northwest Netherlands, were reconstructed by means of chironomid, diatom and pollen analyses. Diatom assemblages indicate that Hijkermeer was a shallow, oligo- to mesotrophic lake during this period. Pollen assemblages reflect the typical northwest European Lateglacial vegetation development and provide an age assessment for the record from the beginning of the Older Dryas (ca 14 000 calibrated 14C yr BP) into the early Holocene (to ca 10 700 calibrated 14C yr BP). The chironomid record is characterized by several abrupt shifts between assemblages typically found in mid-latitude subalpine to alpine lakes and assemblages typical for lowland environments. Based on the chironomid record, July air temperatures were reconstructed using a chironomid-temperature transfer-function from central Europe. Mean July air temperatures of ca 14.0–16.0 °C are inferred before the Older Dryas, of ca 16.0–16.5 °C during most of the Allerød, of ca 13.5–14.0 °C during the Younger Dryas, and of ca 15.5–16.0 °C during the early Holocene. Two centennial-scale decreases in July air temperature were reconstructed during the Lateglacial interstadial which are correlated with Greenland Interstadial events (GI)-1d and -1b. The results suggest that vegetation changes in the Netherlands may have been promoted by the cooler climate during GI-1d, immediately preceding the Older Dryas biozone, and GI-1b. The Hijkermeer chironomid-inferred temperature record shows a similar temperature development as the Greenland ice core oxygen isotope records for most of the Lateglacial and a good agreement with other temperature reconstructions available from the Netherlands. This suggests that chironomid-based temperature reconstruction can be successfully implemented in the Northwest European lowlands and that chironomids may provide a useful alternative to oxygen isotopes for correlating European lake sediment records during the Lateglacial.  相似文献   

4.
Late glacial and early Holocene summer temperatures were reconstructed based on fossil chironomid assemblages at Lake Brazi (Retezat Mountains) with a joint Norwegian–Swiss transfer function, providing an important addition to the late glacial quantitative climate reconstructions from Europe. The pattern of the late glacial temperature changes in Lake Brazi show both similarities and some differences from the NGRIP δ18O record and other European chironomid-based reconstructions. Our reconstruction indicates that at Lake Brazi (1740 m a.s.l.) summer air temperature increased by ~ 2.8°C at the Oldest Dryas/Bølling transition (GS-2/GI-1) and reached 8.1–8.7°C during the late glacial interstade. The onset of the Younger Dryas (GS-1) was characterized by a weak (< 1°C) decrease in chironomid-inferred temperatures. Similarly, at the GS-1/Holocene transition no major changes in summer temperature were recorded. In the early Holocene, summer temperature increased in two steps and reached ~ 12.0–13.3°C during the Preboreal. Two short-term cold events were detected during the early Holocene between 11,480–11,390 and 10,350–10,190 cal yr BP. The first cooling coincides with the Preboreal oscillation and shows a weak (0.7°C) temperature decrease, while the second is characterized by 1°C cooling. Both cold events coincide with cooling events in the Greenland ice core records and other European temperature reconstructions.  相似文献   

5.
Western Ireland, located adjacent to the North Atlantic, and with a strongly oceanic climate, is potentially sensitive to rapid and extreme climate change. We present the first high‐resolution chironomid‐inferred mean July temperature reconstruction for Ireland, spanning the late‐glacial and early Holocene (LGIT, 15–10 ka BP). The reconstruction suggests an initial rapid warming followed by a short cool phase early in the interstadial. During the interstadial there are oscillations in the inferred temperatures which may relate to Greenland Interstadial events GI‐1a–e. The temperature decrease into the stadial occurs in two stages. This two‐stage drop can also be seen in other late‐glacial chironomid‐inferred temperature records from the British Isles. A stepped rise in temperatures into the Holocene, consistent with present‐day temperatures in Donegal, is inferred. The results show strong similarities with previously published LGIT chironomid‐inferred temperature reconstructions, and with the NGRIP oxygen‐isotope curve, which indicates that the oscillations observed in the NGRIP record are of hemispherical significance. The results also highlight the influence of the North Atlantic on the Irish climate throughout the LGIT. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Chironomids (non-biting midges) can provide accurate climate reconstructions from the Late Glacial to the present. Until now, anoxic lakes have been avoided for temperature reconstructions since chironomid assemblages are sensitive to changes in oxygen concentrations in the hypolimnion. However, anoxic lakes may have varved sediments, providing the possibility for near-annual climate reconstructions. Here, we tested the applicability of two calibration methods to reconstruct mean July air temperatures from chironomid assemblages preserved in the sediments of the anoxic Seebergsee located in the northern Swiss Alps: a calibration-in-space approach and a calibration-in-time approach. The calibration-in-space approach (i.e. chironomid assemblages from surficial lake sediments (0–1 cm) calibrated against meteorological data) provided accurate inferences (i.e. similar temperature changes as measured at the closest meteorological station, and at regional stations) in the Seebergsee stratigraphy until anoxia increased in the lake. With the increase of anoxia, the chironomid-inferred temperatures were generally colder than measured temperatures. A calibration-in-time approach (i.e. calibration of chironomid assemblages in a time series against instrumental data from the closest meteorological station) provided accurate reconstructions (i.e. similar to the regional records) for the past 100 years, including the time period of inferred anoxia. However, its applicability should be further tested on longer temporal scales.  相似文献   

7.
We present a Lateglacial and early Holocene chironomid‐based July air temperature reconstruction from Foppe (1470 m a.s.l.) in the Swiss Southern Alps. Our analysis suggests that chironomid assemblages have responded to major and minor climatic fluctuations during the past 17 000 years, such as the Oldest Dryas, the Younger Dryas and the Bølling/Allerød events in the Lateglacial and the Preboreal Oscillation at the beginning of the Holocene. Quantitative July air temperature estimates were produced by applying a combined Norwegian and Swiss temperature inference model consisting of 274 lakes to the fossil chironomid assemblages. The Foppe record infers average July air temperatures of ca. 9.9 °C during the Oldest Dryas, 12.2 °C during most of the Bølling/Allerød and 11.1 °C for the Younger Dryas. Mean July air temperatures during the Preboreal were 14 °C. Major temperature changes were observed at the Oldest Dryas/Bølling (+2.7 °C), the Allerød/Younger Dryas (?2 °C) and the Younger Dryas/Holocene transitions (+3.9 °C). The temperature reconstruction also shows centennial‐scale coolings of ca. 0.8–1.4 °C, which may be synchronous with the Aegelsee (Greenland Interstadial 1d) and the Preboreal Oscillations. A comparison of our results with other palaeoclimate records suggests noticeable temperature gradients across the Alps during the Lateglacial and early Holocene. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Inferred mean annual temperatures (Tann) from a radiocarbon-dated fossil pollen stratigraphy obtained from Lake Trehörningen, southwest Sweden, provide evidence of climate variability during the Holocene in the boreal-nemoral zone of Sweden. The record indicates low early Holocene temperatures, followed by a rising trend and maximum temperature values from about 7000 to 4000 cal. yr BP. During the later part of the Holocene until present day, a cooling trend is reflected in the temperature record. At about 8200 cal. yr BP, temperatures temporarily drop, and at 8000 cal. yr BP the rising temperature trend is recovered. Inferred mid-Holocene temperatures are about 2.5-3°C higher than at present, and also higher than other pollen-inferred mid-Holocene temperatures of 1.5-2.5°C further to the north and east in Scandinavia. The reconstructed long-term climate pattern in Trehörningen has an overall consistency with temperature reconstructions from Scandinavia, suggesting a regional climate link for the Holocene variability in Sweden. Holocene climate trends in Trehörningen also show a remarkably similar pattern with the classic work on postglacial climate change by Sernander (1893, Sernander 1909), Andersson (1909) and von Post (1924).  相似文献   

9.
The taxonomic composition of chironomid, cladoceran and diatom assemblages in small lakes in the Alpine region shows a strong relationship with summer temperature. Since fossils of all three organism groups preserve well and remain identifiable in lake sediments, summer temperature transfer-functions can be developed based on the modern distribution of these organisms and applied to fossil records to reconstruct past summer temperature variability. We provide a summary of the chironomid-, cladoceran- and diatom-based transfer functions available from the Swiss Alps and discuss the potential problem of co-variation between summer temperature and lake nutrient conditions for transfer-function development. Whereas the diatom-based summer temperature transfer function remains to be evaluated in down-core reconstructions, the cladoceran- and chironomid-based transfer functions have been used successfully to produce summer temperature records on Lateglacial and Holocene time scales that are in good agreement with other temperature reconstructions in the Alps. Major problems that can be encountered when using fossil assemblages of aquatic organisms for temperature reconstruction in the Alpine region are biases in the inferred temperatures associated with human impact on lakes and parameters other than temperature affecting the fossil assemblages. A multi-proxy approach to palaeoenvironmental reconstruction is recommended to keep a close control on past catchment and within-lake processes during the time interval of interest.  相似文献   

10.
A 2.9 m long sedimentary record was studied from a small lake, here referred to as Duck Lake, located at 76°25'N, 18°45'W on Store Koldewey, an elongated island off the coast of Northeast Greenland. The sediments were investigated for their geophysical and biogeochemical characteristics, and for their fossil chironomid assemblages. Organic matter began to accumulate in the lake at 9.1 cal. kyr BP, which provides a minimum age for the deglaciation of the basin. Although the early to mid-Holocene is known as a thermal maximum in East Greenland, organic matter accumulation in the lake remained low during the early Holocene, likely due to late plant immigration and lack of nutrient availability. Organic matter accumulation increased during the middle and late Holocene, when temperatures in East Greenland gradually decreased. Enhanced soil formation probably led to higher nutrient availability and increased production in the lake. Chironomids are abundant throughout the record after 9.1 cal. kyr BP and seem to react sensitively to changes in temperature and nutrient availability. It is concluded that relative temperature reconstructions based on biogeochemical data have to be regarded critically, particularly in the period shortly after deglaciation when nutrient availability was low. Chironomids may be a suitable tool for climatic reconstructions even in those high arctic environments. However, a better understanding of the ecology of chironomids under these extreme conditions is needed.  相似文献   

11.
Engels, S., Helmens, K. F., Väliranta, M., Brooks, S. J. & Birks, H. J. B. 2010: Early Weichselian (MIS 5d and 5c) temperatures and environmental changes in northern Fennoscandia as recorded by chironomids and macroremains at Sokli, northeast Finland. Boreas, Vol. 39, pp. 689–704. 10.1111/j.1502‐3885.2010.00163.x. ISSN 0300‐9483. A 25‐m‐long sediment record spanning the time from the Eemian to the Holocene was recovered from Sokli, northeast Finland. This study focuses on a 6‐m‐long sediment interval that is dated to the Early Weichselian period (MIS 5d and 5c) and consists of lacustrine and fluvial deposits. Using chironomid remains, botanical and zoological macroremains as well as sediment lithology, we were able to reconstruct past changes in the environment, including climate. The results indicate that the site was situated on a flood‐plain during the latter stages of MIS 5d (Herning Stadial) and that summer temperatures might have been ~6 °C lower than at present. Although this value should be treated with caution, as numerical analysis shows that it has a very poor fit‐to‐temperature, this low reconstructed value concurs with several other reconstructions that are available from western Europe. During MIS 5c (Brørup interstadial), the depositional environment changed into a lake system, initially with stratification of the water and subsequently with complete mixing and a strong influence of streams. Both chironomid‐based and macroremain‐based temperature inferences indicate past July air temperatures that were significantly higher than at present. This result is in contrast to other (low‐resolution) reconstructions from northern Fennoscandia that indicate past temperatures 6–7 °C lower than present using fossil coleopteran assemblages. However, several central European sites indicate that there was a phase during the Brørup interstadial that was characterized by high summer temperatures, and a comparison between the high‐resolution reconstructions from western Europe and the results presented in this study suggests that the north–south July air temperature gradient between the mid‐ and high‐latitudes was much weaker during the Brørup interstadial than it is at present. High solar insolation values (particularly the obliquity) during the Brørup interstadial might explain the low summer temperature gradient over the European continent. A return to fluvial conditions occurred in the upper parts of the sediment sequence, and, after a brief interval of gyttja deposition under cooling conditions, the site became glaciated during MIS 5b.  相似文献   

12.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

13.
Changes in vegetation were tracked from a well-dated sediment core from a boreal lake, Lake 239, at ~200-year resolution over the Holocene. This presently oligotrophic lake is located ~100-km east from the present-day parkland-forest ecotone in northwestern Ontario. Near-shore sediment core transects from Lake 239 have previously shown this lake was at least 8-m lower than present in the mid-Holocene, or ~58% less lake volume in comparison to today. Large shifts were expected in the terrestrial vegetation if the low lake levels were related to climate. The core from Lake 239 shows increases in the relative abundance and concentration of pollen such as Cupressaceae and Ambrosia, indicating a more open boreal forest between ~4500–8000 cal yr BP. Pollen-based inferences of average, summer and winter temperatures suggest that temperatures were on average up to 1–2 °C warmer than today, with winter temperatures up to 4 °C warmer. The pollen inferences also suggest enhanced precipitation, likely in the summer, but with an overall increase in evaporation and evapotranspiration resulting in reduced effective moisture. To assess regional climate changes, pollen-based reconstructions of temperature and precipitation were developed and synthesized from sediment cores from eight previously published lakes, from which pollen sites were available to both the west and east of Lake 239, spanning present-day prairie lakes to forested lakes up to 300 km east of the prairie-boreal ecotone. All sites show shifts in pollen assemblages that indicate a warm mid-Holocene period; prairie sites west of the Experimental Lakes Area (ELA) show mid-Holocene decreases in precipitation relative to today, whereas sites near or east of ELA show consistent increases in precipitation, but with increased temperatures and enhanced evaporation during the mid-Holocene.  相似文献   

14.
A sediment core spanning  7000 cal yr BP recovered from Stella Lake, a small sub-alpine lake located in Great Basin National Park, Nevada, was analyzed for subfossil chironomids (non-biting midges), diatoms, and organic content (estimated by loss-on-ignition (LOI)). Subfossil chironomid analysis indicates that Stella Lake was characterized by a warm, middle Holocene, followed by a cool “Neoglacial” period, with the last two millennia characterized by a return to warmer conditions. Throughout the majority of the core the Stella Lake diatom-community composition is dominated by small, periphytic taxa which are suggestive of shallow, cool, alkaline, oligotrophic waters with extensive seasonal ice cover. A reconstruction of mean July air temperature (MJAT) was developed by applying a midge-based inference model for MJAT (two-component WA-PLS) consisting of 79 lakes and 54 midge taxa (rjack2 = 0.55, RMSEP = 0.9°C). Comparison of the chironomid-inferred temperature record to existing regional paleoclimate reconstructions suggests that the midge-inferred temperatures correspond well to regional patterns. This multi-proxy record provides valuable insight into regional Holocene climate and environmental conditions by providing a quantitative reconstruction of peak Holocene warmth and aquatic ecosystem response to these changes in the Great Basin, a region projected to experience increased aridity and higher temperatures.  相似文献   

15.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

16.
A continuous record of insect (Chironomidae) remains preserved in lake sediments is used to infer temperature changes at a small lake in Arctic Canada through the Holocene. Early Holocene summers at the study site were characterized by more thermophilous assemblages and warmer inferred temperatures than today, presumably in response to the positive anomaly in Northern Hemisphere summer insolation. Peak early Holocene warmth was interrupted by two cold reversals between 9.5 and 8 cal ka BP, during which multiple cold-stenothermous chironomid taxa appeared in the lake. The earlier reversal appears to correlate with widespread climate anomalies around 9.2 cal ka BP; the age of the younger reversal is equivocal but it may correlate with the 8.2 cal ka BP cold event documented elsewhere. Widespread, abrupt climate shifts in the early Holocene illustrate the susceptibility of the climate system to perturbations, even during periods of enhanced warmth in the Northern Hemisphere.  相似文献   

17.
This paper presents the first chironomid‐inferred mean July air temperature reconstruction for the Late‐glacial in Britain. The reconstruction suggests that the thermal maximum occurred early in the interstadial, with temperatures reaching about 12°C. There was then a gradual downward trend to about 11°C, punctuated by four distinct cold oscillations of varying intensity. At the beginning of the Younger Dryas, mean July temperatures fell to about 7.5°C but gradually increased to about 9°C before a rapid rise at the onset of the Holocene. The chironomid‐inferred temperature curve agrees closely, both in general trends and in detail, with the GRIP ice‐core oxygen‐isotope curve. The reconstructed temperatures are 2–4°C lower than coleopteran‐inferred temperatures but are closer to those inferred from plant macrofossils and glacial equilibrium‐line altitudes during the Younger Dryas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Luoto, T. P. & Sarmaja‐Korjonen, K. 2011: Midge‐inferred Holocene effective moisture fluctuations in a subarctic lake, northern Lapland. Boreas, 10.1111/j.1502‐3885.2011.00217.x. ISSN 0300‐9483. We examined fossil midge (Diptera: Chironomidae) assemblages from Lake Várddoaijávri, northern Finland to track Holocene effective moisture variability. Application of a midge‐based water‐depth calibration model showed that the early Holocene was characterized by a high water level compared with the Holocene average, but the inferred values decreased at c. 8000 cal. a BP and increased again towards c. 6000 cal. a BP. The inferred water level decreased at c. 5500 cal. a BP, but increased again towards c. 4000 cal. a BP. Between 4000 and 3000 cal. a BP the lake experienced two rapid events of lower water level. A relatively high water level detected at c. 3000 cal. a BP was followed by a lowering towards c. 2000 cal. a BP. The time period from c. 2000 cal. a BP onwards was characterized by a general rise in lake level towards the present. Overall, the present reconstruction shows a close correspondence in its trends to previous lake‐level records in the region. Two common core taxa, Paratanytarsus and Corynocera ambigua, did not correlate significantly with water depth in the calibration data, creating a potential error source for the present lake‐level reconstruction. However, statistical analysis showed a clear community response to long‐term lake‐level changes, and therefore the major trends in Holocene effective moisture patterns were revealed. The present palaeoclimatic information can also serve as valuable background data when assessing the effects of the present climate change.  相似文献   

19.
The large landmass of northern Russia has the potential to influence global climate through amplification of climate change. Reconstructing climate in this region over millennial timescales is crucial for understanding the processes that affect the global climate system. Chironomids, preserved in lake sediments, have the potential to produce high resolution, low error, quantitative summer air temperature reconstructions. Canonical correspondence analysis of modern surface sediments from high-latitude lakes, located in northern European Russia and central Siberia, suggests that mean July air temperature is the most significant variable explaining chironomid distribution and abundance. This strong relationship enabled the development of a chironomid-based mean July air temperature-inference model based on 81 lakes and 89 taxa which has a rjack2 = 0.92 and RMSEP = 0.89 °C. Comparison of taxon responses to July temperature between this Russian and existing Norwegian data-sets shows that the temperature optima of individual taxa were between 1 and 3 °C higher in the Russian data regardless of modelling technique. Reconstructions based on fossil assemblages from a Russian tundra lake core (VORK5) using a Norwegian chironomid-based inference model provide mean July air temperature estimates that are 1.0–2.7 °C colder than from the 81-lake Russian model and are also lower than the instrumental record from a nearby meteorological station. The Norwegian model also did not reconstruct decadal-scale fluctuations in temperature seen in the instrumental record. These observations suggest that chironomid-based inference models should only be applied to sediment cores which have similar climate regimes to the geographic area of the training set. In addition a 149 lake, 120 taxa chironomid-based continentality inference model was also developed from the modern Norwegian and Russian training sets. A 2-component WA-PLS model was the minimal adequate model with rjack2 = 0.73 and RMSEP = 9.9 using the Gorczynski continentality index. Comparison of reconstructed continentality indices from the tundra lake, VORK5, show close agreement with local instrumental records over the past 70 years and suggest that the model is reliable. Recent warming in the Arctic has been spatially and seasonally heterogeneous; in many areas warming is more pronounced in the spring and autumn leading to a lengthening of the summer, while summer temperatures have remained relatively stable. A continentality inference model has the potential to detect these seasonal changes in climate.  相似文献   

20.
The Qinling Mountain range constitutes a critical boundary for climate and vegetation distribution in eastern central mainland China owing to its importance as a geographic demarcation line. In this article, cores from 88 Chinese pines ( Pinus tabulaeformis ) from the southern (MW site) and northern (NWT site) slopes of the Qinling Mountains were used to reconstruct seasonal temperature variations. During the calibration period, significant correlations were found between ring width and the mean temperature from prior September to current April of 0.76 at the southern slope, and between ring width and the mean May–July temperature of 0.67 at the northern slope. The subsequent temperature reconstructions span 1760–2005 for the northern site and 1837–2006 for the southern site. Prior to the mid-20th century, low September–April temperatures were, in general, followed by high May–July temperatures, probably reflecting variations in the winter and summer monsoon. However, since the mid-20th century, both records show trends of a more pronounced increase in September–April temperature on the southern slope. The results provide independent support for the interpretation that recent warming is unusual in nature, coinciding with the observed record. The results compare well with tree-ring based reconstructions from the surrounding regions, suggesting regional signals in the Qinling Mountain reconstructions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号