首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
江西德兴铜矿大坞河土壤重金属累积特征与成因   总被引:1,自引:0,他引:1  
柳建平  赵元艺  薛强  路璐 《地质通报》2014,33(8):1154-1166
江西德兴铜矿是中国超大型斑岩铜矿,随着矿业活动的增加,德兴铜矿区重金属污染问题日益严重。查明德兴铜矿土壤重金属累积作用及原因,可为政府机构、矿山开展环境整冶提供科学依据。在大坞河上游、中游、下游选定3个剖面,采集50件土壤样品,得出其基于地球化学基线的累积特征。整体来讲,Cu、Mo累积作用最为显著,Cr、As累积作用明显,同时发现一级、二级阶地上累积显著,并从矿石组合、地化背景、河流阶地、元素形态、矿山生产等角度开展累积作用的原因分析。  相似文献   

2.
本文主要采用连续提取法对德兴铜矿地区低品位矿石堆浸场和大坞河流域的土壤样品进行元素形态分析。低品位矿石堆浸场中As、Cu元素含量最高分别达到95.7μg/g和1867μg/g,都严重超过国家三级土壤标准,但是通过元素形态分析得到,As元素主要以硫化物态存在(百分比为50%-80%),Cu元素主要以有机结合态存在(百分比为50%-60%),能稳定存在于矿石中。其他元素如Cd、Mo、Pb、Zn都以有机物结合态为主,Cr元素以硅酸盐态为主,Hg元素以硫化物态占主要,重金属迁移性差,对环境的影响不大。大坞河流域上中下游元素形态组成变化不明显。Cu元素含量(平均为400-500μg/g)超过国家三级土壤标准,但是Cu元素主要是以有机结合态存在(比例为35%),稳定性相对较好。而Cd元素虽然在样品中含量在国家三级土壤标准之下,其水溶态、吸附态和碳酸盐态所占的比例较大(30%左右),容易发生迁移转化,对环境的影响较大。Pb元素以有机结合态为主,百分比达到45%;As、Hg元素以硫化物态占主导,百分比大于50%,对环境有潜在的影响。其他元素如Cr、Mo、Zn的硅酸盐态比例最大(50%左右),能比较稳定的存在于土壤中,对环境的影响较小。  相似文献   

3.
Macquarie Harbour in southwest Tasmania, Australia, has been affected severely by the establishment of mines in nearby Queenstown in the 1890s. As well as heavy metal-laden acid rock drainage from the Mount Lyell mine area, over 100 Mt of mine tailings and slag were discharged into the Queen and Ring Rivers, with an estimated 10 Mt of mine tailings building a delta of ca. 2.5 km2 and ca. 10 Mt of fine tailings in the harbour beyond the delta. Coring of sediments throughout Macquarie Harbour indicated that mine tailings accreted most rapidly close to the King River delta source with a significant reduction in thickness of tailings and heavy metal contamination with increasing distance from the King River source. Close to the King River delta the mine tailings are readily discriminated from the background estuarine sediments on the basis of visual logging of the core (laminations, colour), sediment grain size, sediment magnetic susceptibility and elemental geochemistry, especially concentrations of the heavy metals Cu, Zn and Pb. The high heavy metal concentrations are demonstrated by the very high contamination factors (CF > 6) for Cu and Zn, with CF values mostly >50 for Cu for the mine-impacted sediments. Although the addition of mine waste into the King River catchment has ceased, the catchment continues to be a source of these heavy metals due to acid rock drainage and remobilisation of mine waste in storage in the river banks, river bed and delta. The addition of heavy metals to the harbour sourced from the Mount Lyell mines preceded the advent of direct tailings disposal into the Queen River in 1915 with the metals probably provided by acid rock drainage from the Mount Lyell mining area.  相似文献   

4.
The spatial distribution and geoaccumulation indices of four heavy metals were investigated in very shallow marine sediments of southwestern Spain. Surface sediments were collected from 43 sites with water depth ranging from 3 to 20 m. High to very high pollution levels (I geo > 4 for zinc, lead and copper) were detected near the end of the Huelva bank, whereas chromium shows a more hazardous distribution in the southwestern Spanish littoral. Low to moderate heavy metal contents (mainly zinc and lead) were also observed in other two areas at different water depths (Isla Cristina-Piedras River: 10–18 m water depth; Mazagón–Matalascañas: <10 m water depth), whereas unpolluted to moderately polluted sediments were detected in the very shallow zones (<8 m water depth) located between the mouths of the Guadiana and the Piedras Rivers. A regional scenario indicates a strong pollution of the adjacent marine areas by polluted inputs derived from the Tinto–Odiel rivers, with a partial transport of heavy metals by W–E littoral currents even 40 km eastward. The Guadiana River is an additional source of zinc–lead contamination near the Spanish–Portuguese border, mainly at water depths up to 10 m. All these rivers are affected by acid mine drainage processes, derived from millennial mining activities. This pollution affects the sediment quality even 40 km eastward.  相似文献   

5.
The San Pedro River (SPR) is located in northern Sonora (Mexico) and southeastern Arizona (USA). SPR is a transboundary river that develops along the Sonora (Mexico) and Arizona (USA) border, and is considered the main source of water for a variety of users (human settlements, agriculture, livestock, and industry). The SPR originates in the historic Cananea mining area, which hosts some of the most important copper mineralizations in Mexico. Acid mine drainage derived from mine tailings is currently reaching a tributary of the SPR near Cananea City, resulting in the contamination of the SPR with heavy metals and sulfates in water and sediments. This study documents the accumulation and distribution of heavy metals in surface water along a segment of the SPR from 1993 to 2005. Total concentrations of Cd, Cu, Fe, Mn, Pb, and Zn in surface waters are above maximum permissible levels in sampling sites near mine tailing deposits. Nevertheless, a significant decrease in the Fe and SO4 2− in surface water (SO4 2−: 7,180–460.39 mg/L; Fe: 1,600–9.51 mg/L) as well as a gradual decrease in the heavy and transition metal content were observed during the period from 1994 to 2005. Approximately 2.3 km downstream of the mine tailings, the heavy metal content of the water drops quickly following an increase in pH values due to the discharging of wastewater into the river. The attenuation of the heavy metal content in surface waters is related to stream sediment precipitation (accompanied by metal coprecipitation and sorption) and water dilution. Determining the heavy metal concentration led to the conclusion that the Cananea mining area and the San Pedro River are ecosystems that are impacted by the mining industry and by untreated wastewater discharges arising from the city of Cananea (Sonora, Mexico).  相似文献   

6.
The Me?a River Valley has been a center of mining, ore processing and iron- and steel-based metallurgical industry for more than 300 a. This paper deals with stream sediments draining this area. Loads of potentially toxic metals and metal-bearing phases were investigated 10 a after the cessation of Pb and Zn mining. Sediments in the upper Me?a River Valley show significant pollution with Pb and Zn as a consequence of mining and ore processing. The highest contents of Pb and Zn were found in the Me?a tributaries, which directly drain mine waste deposits (maximum values: 19,300 mg/kg Pb and 37,900 mg/kg Zn). These results reflect transport of contaminated material from mine waste sites and indicate that the inactive mine and its mine wastes are sources of metal contamination in the surrounding environment. Contents of Cr, Ni, Cu and Co are increased in the lower Me?a River Valley, in the area of Ravne, as a result of the iron and steel industry. The contribution of the Me?a River to the metal-load in the Drava River is evident.Metal-bearing phases, identified in stream sediments by SEM/EDS, are assigned to three areas, according to their source and genesis. The Me?ica mining district source area is characterized by ore minerals of geogenic/technogenic origin (cerussite, sphalerite, smithsonite and galena), the Ravne source area is characterized by technogenic trace metal-bearing Fe-alloys, Fe-oxides and spherical trace metal-oxides and the Me?a and Drava River catchment areas are represented by geogenic metal-bearing accessory and common rock-forming minerals, such as zircon, ilmenite, rutile, sphene, barite and monazite. SEM/EDS analyses of stream sediments agree well with the results of chemical analyses and they prove to be a very useful tool for identification of metal-bearing phases and their characterization according to source and genesis.  相似文献   

7.
南海湖沉积物重金属形态分布及其对水质影响的研究   总被引:4,自引:0,他引:4  
通过对包头市南海湖沉积物中Cu、Pb、Zn、Cd的形态、AVS和SEM、上覆水、上覆过滤水及沉积物间隙水重金属的系统分析,结合南海湖为黄河新成牛轭湖的特点,与黄河进行了对比,研究了重金属在固、液两相间的迁移转化规律,结果表明南海湖与黄河沉积物中重金属的残渣态非常接近,反映了沉积的同源性,Pb和Cd次生相则明显在南海湖发生富集,上覆水中重金属81.0%以上均结合在悬浮物上,南海湖水质长期Cu超标的现象是由沉积物的释放造成的,研究证明间隙水为重金属向上覆水迁移起到桥梁通道作用;有机络合物的络合作用超过AVS的沉淀作用,是导致Cu向水相扩散迁移的主导因子。  相似文献   

8.
Heavy metal contamination and their distribution in different size fractions of the surficial sediment in Haihe River, China have been investigated. These results reveal that the heavy metal contamination of Haihe River is closely related to the contaminating sources along the river and has the order: Cd > Cu > Pb > Cr. The contents of these heavy metals in the sediment of Haihe River are at least two times higher than their background values and the highest contaminating metal, Cd, is 15.5 times higher than its background value and determined in the urban area of Tianjin city. The surficial sediments of Haihe River, with 70% particles smaller than 20 μm, belong to sandy clay containing about 28% clay and 42% silt. Electron micrographs and x-ray analysis show that the concentrations of heavy metals depend on the particle size of sediments. The highest concentrations for most metals exist in fine-grained sediments, which are mainly composed of silicates, oxides, and hydroxides of Si, Fe, and Al. In contrast, lower levels of heavy metals are usually found in the coarse sandy sediments, which are composed of quartz, feldspar, and other rocky substances. Based on the results in the present study of the surficial sediments of Haihe River, the contents of Cr, Cu, Pd, and Cd in finer sediments are 2.4, 3.9, 2.8, and 3.6 times higher than those in coarse sandy sediments, respectively. Obviously, because of rapid industrial development in this area during the last few decades, the surficial sediments of Haihe River, especially those finer fractions, have been seriously contaminated by heavy metals.  相似文献   

9.
 Past mining and smelting of sulphide ore (pyrite-chalcopyrite-sphalerite) at the abandoned Gulf Creek mine has resulted in a stream highly contaminated by acid mine drainage (pH: 2.2–3.4), as well as degradation of local soil and vegetation. Physical dispersion of secondary metal-bearing minerals from abandoned ore and waste dumps into Gulf Creek and adsorption and coprecipitation of dissolved metals and metalloids in the stream bed cause elevated Ag, As, Cd, Cu, Fe, Pb and Zn values in stream sediments. The bioavailability of individual heavy metals to freshwater organisms changes downstream, however, selective bioaccumulation processes in algae reject readily bioavailable Zn and concentrate less bioavailable Cu. Polluted soils in the vicinity of the mine and smelter sites are subject to continuing soil erosion and either support no vegetation, or a depauperate flora with certain species showing bioaccumulation of metals and resistance to high metal contents. Rehabilitation of disturbed areas should involve covering and sealing sulphidic mine waste or removal of ore and waste dumps, installation of a physical and chemical plant or construction of a wetland environment (plus anoxic lime drains), and import of topsoil and planting of local, metal-tolerant plant species. Received: 17 March 1998 / Accepted: 6 October 1998  相似文献   

10.
滦河流域沉积物中重金属分布特征及风险评价   总被引:3,自引:0,他引:3  
郝红  高博  王健康  周怀东  陆瑾  殷淑华  朱成 《岩矿测试》2012,31(6):1000-1005
沉积物作为重金属污染物的源和汇,对水环境有着至关重要的影响.为了全面了解滦河沉积物中重金属污染现状,采用电感耦合等离子体质谱法对滦河干支流沉积物中重金属含量进行了测定,分析了其空间分布,并采用潜在生态危害指数法对滦河沉积物进行了评价.结果表明:滦河沉积物中Cr、Ni、Cu、Zn、Cd 和Pb的平均含量分别为60.40、26.15、48.07、76.42、0.30、25.55 mg/kg,其中Cu和Cd含量高于中国水系沉积物背景值.滦河干流的重金属含量空间分布自上游往下游呈逐渐增加趋势.潜在生态危害指数评价结果表明:不同重金属污染对滦河流域生态风险构成的危害由强至弱依次为:Cd>Cu >Pb>Cr> Zn,其中Cu、Pb、Cr和Zn为低生态危害等级,Cd以中等生态危害等级为主.总体上,滦河沉积物重金属处于中等生态危害等级,干流大黑汀水库和支流瀑河宽域处于强生态危害等级.  相似文献   

11.
Fresh flood deposits were sampled in the flood-plains of two river systems, the River Meuse, with a catchment area of 33,000 km2 and the River Geul, with a catchment area of 3,000 km2. As a result of industrial and mining activities, both rivers have a history of severe metal pollution, especially with zinc, lead, and cadmium. The flood deposits of both rivers are heterogeneous mixtures of contaminated bottom sediments (with relatively long residence times in the river) and clean sediments derived from soil erosion on agricultural cropland (with very short residence times). An additional source of sediment is formed by erosion of older, locally highly contaminated streambank deposits. These older sediments are polluted as a result of solid waste disposal containing metalliferous ore and tailings in the sand fraction. This is especially the case in the River Geul, which drains an old zinc and lead mining area. The metal content of the Meuse sediments, however, originates largely from liquid industrial wastes and occurs mainly in the clay fraction. For this reason, the positive correlation between textural composition, organic matter content, and heavy metal concentration, which is often reported, was not observed, and normalization of the metal content was not possible. Nevertheless, a clear decrease of contamination was noticed along the River Geul; this trend was absent along the River Meuse. An attempt has been made to model the longitudinal decay pattern for each of the investigated havey metals.  相似文献   

12.
Mining activities pose a potential risk of metal contamination around mining sites. On May 6, 2010, a tailings dam failure of the Mazraeh copper mine near Ahar in East Azerbaijan province, Iran, released vast amounts of mine wastes. To better understand the magnitude of copper contamination in the waste-affected soils, it is important to assess the spatial distribution of soil copper content at unsampled points. A total of 30 soil samples and their surficial sediments together with the 6 uncontaminated control samples (0–10 and 10–30 cm) were collected along the stream flow that joined Ahar-Chai River. Some of soil properties as well as total copper concentration were determined in all samples. The mean value of the latter in the surface contaminated soils was found to be approximately two times more than controls. Furthermore, the mean concentration of copper in the surface loaded material was 10 times more than the soils. High copper concentrations were observed in surficial sediments of the soils near the broken tailings dam. The Inverse Distance Weighting (IDW) method was employed in data analysis. The spherical and Gaussian semivariogram models were properly fitted to the data of copper contents in soils and surficial sediments.  相似文献   

13.
The sedimentary record from dams can provide important information about stratigraphy and pollution history of densely populated river basins. The Brno Dam is a small reservoir within the Morava River catchment (Czech Republic) accumulating lacustrine sediments since 1940 (dam filling). The stratigraphy of the dam sediments was studied using multiproxy stratigraphic analysis (X-ray densitometry, bulk magnetic susceptibility, diffuse spectral reflectance and cation-exchange capacity) of five sediment cores supported by ground-penetration radar sections. Concentrations of heavy metals were studied by X-ray fluorescence analysis. The thickness of the dam sediments decreases from 220 cm in the proximal part, near the feeder, to only 10 cm in the distal part, near the dyke. Sediments consist predominantly of finely-laminated silty sands, silts and clays. The sedimentation rate for the last ~22 years, inferred from 137Cs dating, decreases from 4.2 cm per year in the proximal part of the dam to 0.29 cm per year in its distal part. Distinct long-term trends were found in the depth profiles of heavy metal concentrations. The heavy metal contents increase significantly after 1940 in all cores, with peak concentrations confined to layers deposited in the 1960s and 1980s. A decreasing trend occurred after 1989 (the decline in Czech heavy industry). The results also show that heavy metal contamination is dependent on lithology (hyperpycnal flow layers related to floods). Increased concentrations of phosphorus in the sediments indicate long-term eutrophication of the dam. Despite the recent decreasing trends in heavy metal concentrations the phosphorus contents remain high in recent years and have caused persisting problems with algal growth in the dam mentioned by previous authors.  相似文献   

14.
陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价   总被引:3,自引:1,他引:2  
徐友宁  张江华 《地质通报》2008,27(8):1263-1671
通过对潼关金矿区太峪河和太峪水库底泥中重金属元素总量的调查,探讨了金矿开发活动中重金属元素对河流底泥的污染程度。研究结果表明,除As外,河流底泥中重金属元素的含量与尾矿渣中重金属元素的含量变化一致,表明其主要来源于尾矿渣,但又明显高于尾矿渣。在同一地点河流底泥中重金属元素的含量平均高出河水中的1048.61~666030.08倍,呈显著富集。以邻近地区不受工矿活动影响的河流底泥重金属元素的含量均值作为评价参比值,太峪河底泥受到了Hg、Pb、Cd、Cu、Zn元素的极度污染,单项污染超标倍数及综合污染指数法评价结果表明,Hg、Pb、Cd平均污染超标倍数达366.90、217.42和149.97,是底泥中最主要的污染元素。河流底泥重金属元素的综合污染指数高达278.97,表明河流的复合污染亦呈极度状态。太峪河底泥受重金属元素极度污染的现实提示,矿区的环境防治工作已刻不容缓。  相似文献   

15.
路璐  赵元艺  柳建平  薛强 《地质通报》2014,33(8):1205-1212
以2004年和2011年江西德兴铜矿开采区影响的大坞河流域共计140件水、土、底泥及种植物样品中Cu的含量为研究对象,参考国家标准对大坞河流域不同河段Cu污染进行评价,研究不同环境介质中Cu含量随时间变化的规律,并且探讨种植物中Cu元素的来源。研究表明,从空间上看大坞河源区和上游的样品超标率最高,分别达到70.3%和90.9%。7年间研究区环境介质中的Cu元素总体是趋于恶化的,除地表水和土壤中Cu含量有所降低外,其他环境介质中的Cu含量都有所增加,最明显的是2011年小白菜中的Cu元素含量是2004年的11.68倍。与种植物密切相关的地表水和对应土壤中Cu元素的变化规律存在较大差异,据此推断其Cu元素来源与元素形态、大气干湿沉降等因素有关。  相似文献   

16.
The abandoned Kilembe copper mine in western Uganda is a source of contaminants, mobilised from mine tailings into R. Rukoki flowing through a belt of wetlands into Lake George. Water and sediments were investigated on the lakeshore and the lakebed. Metal associations in the sediments reflect the Kilembe sulphide mineralisation. Enrichment of metals was compared between lakebed sediments, both for wet and dry seasons. Total C in a lakebed core shows a general increment, while Cu and Co decrease with depth. The contaminants are predominant (> 65%) in the ≤ 63 μm sediment size range with elevated Cu and Zn (> 28%), while Ni, Pb and Co are low (< 18%) in all the fractions. Sequential extraction of Fe for lakeshore sediment samples reveals low Fe mobility. Relatively higher mobility and biological availability is seen for Co, Cu and S. Heavy metal contents in lake waters are not an immediate risk to the aquatic environment.  相似文献   

17.
Heavy metal concentrations in floodplain surface soils, Lahn River, Germany   总被引:2,自引:0,他引:2  
 Even relatively pristine drainage basins in industrial countries would appear to have received anthropogenic inputs of heavy metals. Investigation of floodplain surface soils in the Lahn River drainage basin, west-central Germany, indicates that the Cu concentration is 1.5 times the pre-industrial level, Pb and Zn contents twice the pre-industrial level; Cd, Co, and Cr concentrations are nearly equal to background metal values. Based on contamination standards developed for the Lahn River, floodplain soils are moderately contaminated with Pb and Zn, slightly contaminated with Cu. Metal contents are uniform across the floodplain, with the exception of a peak immediately adjacent to the Lahn River. Floodplain surface soil metal contents are less in the Lahn River basin than in larger drainage systems of Germany. Although Lahn River metalliferous sediments are presently immobile, they would, if eroded, contribute to downstream heavy metal concentrations. Consequently, metal storage in smaller drainage basins such as the Lahn should be considered in predictions of future metal loads in major river systems, for aggregate small basins could serve as significant metal contributors. Received: 21 August 1995 · Accepted: 23 January 1996  相似文献   

18.
Sewage discharge (chiefly waste waters into the Pointe à Pitre bay originates from the neighboring developing town (60,000 inhabitants) A sampling campaign carried out in March 1984 permitted the assessment of both water and sediment quality in the bay, as well as the evaulation of heavy metal contents Industrial pollution appears insignificant whilst urban pollution dominates. Heavy metal contents (lead (Pb), zinc (Zn), copper (Cu)) are high in the sediments of the inner end of the bay and eastern bank, parallel to the urban agglomeration. This anthropogenic origin is accounted for by comparison of heavy metal contents with those prevailing in the terrestrial environment  相似文献   

19.
Core and surface sediments from the Tonalli River, a tributary of the artificial lake, Lake Burragorang, in the Blue Mountains National Park, New South Wales, Australia, were studied to evaluate the spatio-temporal distribution of pollutants from the Yerranderie silver-lead-zinc mine site, abandoned in the late 1920s. A sediment core was collected in the mouth of the Tonalli River, at its junction with Lake Burragorang, and surface sediment samples were collected in the Tonalli River and its tributaries. The concentrations of Pb, As, Zn, Cu, Cd, Hg and Ag in the sediments were determined by ICP-MS and ICP-AES techniques. Temporal variability of metal concentrations was established through 210Pb dating of the core sediments and compared with published historical records, rainfall records and bushfire data. Metal concentrations in core sediments showed an overall increase around the year 1950 as well as increases coincident with heavy rainfall. Spatially, metal concentrations were up to 400 times the guideline limit around mine sites but decreased rapidly with distance downstream of the mines.  相似文献   

20.
Pu  Wanqiu  Sun  Jiaqi  Zhang  Fangfang  Wen  Xingyue  Liu  Wenhu  Huang  Chengmin 《中国地球化学学报》2019,38(5):753-773

Metallic ore mining causes heavy metal pollution worldwide. However, the fate of heavy metals in agrosystems with long-term contamination has been poorly studied. Dongchuan District (Yunnan, southwest China), located at the middle reaches of the Xiaojiang River, is a well-known 2000-year-old copper mining site. In this work, a survey on soil heavy metal contents was conducted using a handheld X-ray fluorescence instrument to understand the general contamination of heavy metals in the Xiaojiang River Basin. Furthermore, river water, soil, and rice samples at six sites along the fluvial/alluvial fans of the river were collected and analyzed to implement an environmental assessment and an evaluation of irrigated agrosystem. V, Zn, and Cu soil levels (1724, 1047, and 696 mg·kg−1, respectively) far exceeded background levels. The geo-accumulation indexes (Igeo) showed that cultivated soils near the mining sites were polluted by Cd and Cu, followed by Zn, V, Pb, Cr, Ni, and U. The pollution index (Pi) indicated that rice in the area was heavily polluted with Pb, Cr, Cd, Ni, Zn, and Cu. The difference in orders of metal concentrations between the soil and rice heavy metal contamination was related to the proportion of bioavailable heavy metals in the soil. The crop consumption risk assessment showed that the hazard quotient exceeded the safe threshold, indicating a potential carcinogenic risk to consumers. The Nemerow integrated pollution index and health index indicated that the middle of the river (near the mining area) was the heaviest polluted site.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号