首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
中国煤中硒的环境地球化学   总被引:1,自引:0,他引:1  
硒是煤中易挥发元素之一。伴随煤炭的开采、利用,煤中硒可能进入环境并引起环境质量的变化,影响生态环境和人体健康。本文在全面综合国内外研究文献的基础上,分析了中国煤中硒在不同省份、不同成煤时代中的含量及分布规律,总结了硒在煤中的赋存状态、形成机理和影响因素,概括了煤在燃烧和淋溶过程中硒的迁移转化及其环境影响,指出中国煤中硒的含量在不同煤田、不同成煤时代及不同变质程度的煤中,含量差别较大,全国平均值约为5.60 mg/kg。  相似文献   

2.
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals.  相似文献   

3.
The concentration, distribution and modes of occurrence of trace elements in thirty coals, four floors and two roofs from Northern China were studied. The samples were collected from the major coalfields of Shanxi Province, Shaanxi Province, Inner Mongolian Autonomous Region, and Ningxia Hui Autonomous Region. The concentrations of seventeen potential hazardous trace elements, including Hg, As, Se, Pb, Cd, Br, Ni, Cr, Co, Mo, Mn, Be, Sb, Th, V, U, Zn, and five major elements P, Na, Fe, Al, and Ca in coals were determined.Compared with average concentration of trace elements in Chinese coal, the coals from Northern China contain a higher concentration of Hg, Se, Cd, Mn, and Zn. They may be harmful to the environment in the process of combustion and utilization. Vertical variations of trace elements in three coal seams indicated the distributions of most elements in coal seam are heterogeneous. Based on statistical analyses, trace elements including Mo, Cr, Se, Th, Pb, Sb, V, Be and major elements including Al, P shows an affinity to ash content. In contrast, Br is generally associated with organic matter. Elements As, Ni, Be, Mo, and Fe appear to be associated with pyrite. The concentrations of trace elements weakly correlate either to coal rank or to maceral compositions.  相似文献   

4.
煤中微量元素Sr和Ba的分布和赋存模式对研究煤层成煤古环境和煤炭的洁净利用有重要的意义。通过对横山5个矿区24个主采煤层煤样的工业分析、元素分析、矿物组成分析,采用相关性分析和逐级化学提取实验,研究该主采煤层中Sr和Ba的分布和赋存模式。研究发现,区内超过75%煤样属于特低灰煤;约96%的煤样全硫质量分数超过1%;主要的矿物成分为高岭石、黄铁矿和方解石。超过总分析煤样75%的样品中Sr和Ba富集,且在水平方向上Sr和Ba含量北部较南部更高。煤中Sr和Ba主要负载在天青石、重晶石、菱锶矿、碳酸钡矿、方解石和文石等矿物中。煤中Sr和Ba富集的主要原因是煤层中含有负载这两种元素的矿物。   相似文献   

5.
Environmental geochemistry and health of fluorine in Chinese coals   总被引:2,自引:0,他引:2  
Fluorine is one of the potential hazardous trace elements in coal. Fluorine may be released into atmosphere mostly during coal combustion process. When the coal is burning indoors without any controlling methods (chimney), the fluorine will pollute the room and is absorbed by food fired (dried) over stoves. Now many people have suffered from fluorosis due to coal burning indoors in Southwest China. In this paper, the concentration, distribution, mode of occurrences and impact factors of fluorine in Chinese coals are analyzed. The environmental impacts and typical features of fluorosis are studied. It is concluded that the value of fluorine in Chinese coals ranges from 20 to 300 mg/kg, and with average value of 122 mg/kg from 5,603 coal samples. It is higher than the average value of the world coals (80 mg/kg). In provincial coalfields of the SW China, the content of F is highest and many people have been affected due to coal combustion indoors.  相似文献   

6.
Pakistan is rich in coal resources, which amount to around 186 billion tons. The Paleocene Padhrar and Darra Adam Khel coalfields are located in the Central Salt Range Punjab Province and the Khyber Pakhtunkhwa Province, Pakistan, respectively. Padhrar coal has not been studied in detail and the Darra Adam Khel coalfields are newly-discovered, so no research has been done, due to security considerations. In this study, an attempt has been made to study the geochemical and mineralogical characteristics of the Padhrar and Darra Adam Khel coals, in order to learn about the coal quality, element enrichment mechanism, sedimentary medium conditions and potentially valuable elements for coal utilization. The Padhrar and Darra Adam Khel coals are low to medium ash, low moisture content, high in volatiles and high total sulfur coal. The vitrinite reflectance in Darra Adam Khel coal is higher than in Padhrar coal, indicating either a greater burial depth or the effects of Himalayan tectonism. The vitrinite content is dominant in the Padhrar and Darra Adam Khel coals, followed by inertinite and liptinite, the major minerals including quartz, clay minerals, calcite and pyrite. The trace elements Ni, As, Be Zn, Ge, Mo, Ta, W, Co and Nb, Sn, Hf, Ta, Pb, Th, Cd, In, Be, V, Cr, Zr, Ag, Li, W and Co are concentrated in some of the Padhrar and Darra Adam Khel coal samples, respectively. The Padhrar coal shows positive Ce, Eu and Gd anomalies, with most of the Darra Adam Khel coal showing negative Ce, Eu and positive Gd anomalies with high LREE. The Al2O3/TiO2 values indicate that the sediment source of the Padhrar and Darra Adam Khel coals is mostly related to intermediate igneous rocks. The Sr/Ba, SiO2 + Al2O3, Fe2O3 + CaO + MgO/SiO2 + Al2O3 and high sulfur content in the Padhrar and Darra Adam Khel coals indicate epithermal and marine water influence with a tidal flat, coal-forming environment and a deltaic coal-forming environment, respectively.  相似文献   

7.
The occurrence and distribution of major and trace elements have been investigated in two coal-bearing units in the Chonqing mining district (South China): the Late Permian and Late Triassic coals.The Late Permian coals have higher S contents than the Late Triassic coals due to the fixation of pyrite in marine-influenced coal-forming environments. The occurrence of pyrite accounts for the association of a large number of elements (Fe, S, As, Cd, Co, Cu, Mn, Mo, Ni, Pb, Sb, Se, and Zn) with sulphides, as deduced from the analysis of the density fractions. The marine influence is probably also responsible for the organic association of B. The REEs, Zr, Nb, and Hf, are enriched by a factor of 2–3 with respect to the highest levels fixed for the usual worldwide concentration ranges in coal for these elements. The content of these elements in the Late Permian coal is higher by a factor of 5–10 with respect to the Late Triassic coal. Furthermore, other elements, such as Cu, P, Th, U, V, and Y, are relatively enriched with respect to the common range values, with maximum values higher than the usual range or close to the maximum levels in coal. The content of these elements in the Late Permian coal is higher than the Late Triassic coal. These geochemical enrichments are the consequence of the occurrence, in relatively high levels, of phosphate minerals, such as apatite, xenotime, and monazite, as deduced from the study of the density fractions obtained from the bulk coal.The Late Triassic coal has a low sulphur content with a major organic affinity. The trace element contents are low when compared with worldwide ranges for coal. In this coal, the trace element distribution is governed by clay minerals, carbonate minerals, and to a lesser extent, by organic matter and sulphide minerals.Major differences found between late Permian and Triassic coals are probably related to the source rocks, given that the main source rock of the late Permian epicontinental marine basin is the Emeishan basalt formation, characterised by a high phosphate content.  相似文献   

8.
This paper gives the stable carbon isotopic data in coals from the Late Namurian to Kazanian stages inthe Serteng Mt., Xishan and Huainan coalfields of the North China Platform. Its stratigraphic pattern shows that sev-eral isotopic shifts are apparent, and the large δ~(13)C negative shifts (approximately 2.5 to 3.0‰) occurred during theStephanian, Artinskian and Kazanian are observed in three Permo-Carboniferous coalfields. Those negative shifts areneither related to the coal rank and coal macerals, nor caused by the variety of peat-forming plants. The general de-crease in the δ~(13)C values of the Stephanian, Artinskian and Kazanian coals is consistent with an overall decrease inthe δ~(13)C values of ambient atmospheric CO_2 and/or a relative increase in atmospheric P_(CO2) during the coal-forming pe-riods. Therefore the authors postulate that the oxidation of peat, and the δ~(13)C-depleted CO_2 flux into the atmosphereduring the above stages may have contributed to coeval palaeoclimatic warming by way of the greenhouse effect.  相似文献   

9.
吉林白山地区原煤微量元素地球化学特征   总被引:2,自引:1,他引:1  
对吉林白山地区煤矿主采煤层中的As、B、Ba、Cd、Cu、Hg、Pb、Se、Sr等微量元素进行了分析,结果表明:太原组与山西组由于成煤环境不同,微量元素组成及其质量分数存在一定的差异,太原组原煤中As、B、Hg、Pb、Se、Zn的质量分数明显高于山西组,山西组原煤中Ba、Cr、Cu、Mn、V的质量分数明显高于太原组。白山地区原煤中As、B、Hg、Pb、Se的质量分数明显高于地壳元素平均值,呈富集状态;Co、Cd与地壳平均值接近,其他元素均亏损。与全国煤中微量元素的质量分数平均值相比,As、Ba、Co、Cr、Cu、Hg、Ni、Pb、Se、V、Zn的质量分数高于全国平均值。B、Mn、Sr质量分数低于全国平均值。微量元素赋存状态及相关分析表明,Fe与亲硫有害元素As、Cu、Hg、Pb、Se具有显著相关关系,说明煤中黄铁矿及其他硫化物是许多有害微量元素的重要载体。   相似文献   

10.
The review presented covers: (a) historical introduction; (b) some analytical comments; (c) some peculiarities of the As geochemistry in environment; (d) an estimation of coal Clarke value of As; (e) some coals enriched in As; (f) mode of As occurrence in coal; (g) factors influencing the As distribution in coal matter and coal bed; (h) genetic topics; (i) some topics related to environmental impact of As by the coal combustion.The World average As content in coals (coal Clarke of As) for the bituminous coals and lignites are, respectively, 9.0±0.8 and 7.4±1.4 ppm. On an ash basis, these contents are higher: 50±5 and 49±8 ppm, respectively. Therefore, As is a very coalphile element: it has strong affinity to coal matter — organic and (or) inorganic but obligatory authigenic. The coalphile affinity of As is like that for Ge or S.There is strong regional variability of As distribution due to geologic variability of the individual coal basins. For example, bituminous coals in Eastern Germany, Czech Republic and SE China are enriched in As, whereas the coals in South Africa or Australia are very depleted compared to coal Clarke of As. In general, some relationship exists between As content and its mode of occurrence in coals. Typically, at high As content, sulphide sites dominate (pyrite and other more rare sulphides), whereas at low As content, Asorg dominates, both being authigenic. A contribution of the terrigenic As (in silicates) is usually minor and of the biogenic Asbio (derived from coal-forming plants) is poorly known.Both organic and inorganic As can exist not only as chemically bound form but also in the sorbed (acid leacheable) arsenate form. With increasing coal rank, sorbed exchangeable arsenate content decreases, with a minimum in the coking coals (German data: the Ruhr coals).Relations of As content in coal to ash yield (or its partitioning in sink–float fractions) and to coal petrographic composition are usually complicated. In most cases, these relations are controlled by main site (form) of As — Aspyr or Asorg. If Aspyr dominates, an As accumulation in heavy fractions (or in high-ash coals) is observed, and if Asorg dominates, it is enriched in medium-density fractions (or low- and medium-ash coals). Arsenic is in part accumulated in the inertinite vs. vitrinite (Asorg ?).There are four genetic types of As accumulation on coal: two epigenetic and two syngenetic: (1) Chinese type—hydrothermal As enrichment, sometimes similar to known Carlin type of As-bearing telethermal gold deposits; (2) Dakota type—hypergene enrichment from ground waters draining As-bearing tufa host rocks; (3) Bulgarian type—As enrichment resulting from As-bearing waters entered coal-forming peat bogs from sulphide deposit aureoles; (4) Turkish type—volcanic input of As in coal-forming peat bog as exhalations, brines and volcanic ash.During coal combustion at power plants, most of the initial As in coal volatilizes into the gaseous phase. At the widely used combustion of pulverized coal, most of Asorg, Aspyr and “shielded” As-bearing micromineral phases escape into gaseous and particulate phase and only minor part of Asclay remains in bottom ash. The dominant fraction of escaping As is in fly ash. Because 97–99% of the fly ash is collected by electrostatic precipitators, the atmospheric emission of As (solid phase and gaseous) is usually assumed as rather minor (10–30% from initial As in coal). However, fly ash disposal creates some difficult environmental problems because it is potentially toxic in natural waters and soils. The As leaching rate from ash disposal is greatly controlled by the ash chemistry. In natural environment, As can be readily leached from acid (SiO2-rich) bituminous coal ashes but can be very difficult from alkali (CaO-rich) lignite ashes.If the Aspyr form dominates, conventional coal cleaning may be an efficient tool for the removing As from coal. However, organic-bound or micromineral arsenic (“shielded” grains of As-bearing sulphides) are not removed by this procedure.Some considerations show that “toxicity threshold” of As content in coal (permissible concentration for industrial utility) may be in the range 100–300 ppm As. However, for different coals (with different proportions of As-forms), and for different combustion procedures, this “threshold” varies.  相似文献   

11.
陕西渭北聚煤区原煤的微量元素组成特征   总被引:4,自引:0,他引:4  
对陕西省渭北主要煤田主采煤层中的As、Pb、Hg、Cd、Se、Cu、Sr、Ba、B等微量元素的分析结果表明:渭北原煤中Hg、Se、As、Pb、B含量明显高于地壳平均值,呈富集状态;Co、Cd与地壳平均值接近,Cu、Zn、Sr、Ba等元素均亏损。太原组和山西组由于成煤环境不同,煤质和原煤的微量元素组成特征存在一定的差异。太原组煤的友分和硫分均较山西组煤高,原煤中As、Hg、Se、Pb、Zn、B的合量明显高于山西组原煤,而山西组原煤中V、Cr、Cu、Mn、Ba的含量别明显高于大原组原煤。统计分析表明,As、Hg、Se、Pb、Cu等亲硫元素与铁呈显著的正相关关系,它们的赋存形式可能与煤中黄铁矿有关。  相似文献   

12.
为了探讨中国西南地区二叠系乐平统(上二叠统)龙潭组中下部煤系不同煤组分中砷、硒的含量和演化及古环境意义,对近10年来采集于中国西南扬子地台的二叠系乐平统龙潭组主采煤层的原煤、亮煤、煤矸石、黄铁矿结核等样品中砷、硒元素含量进行了测定和分析,并与中国华北地台一些煤矿的上石炭统-下二叠统太原组、山西组的原煤、镜煤、亮煤、煤矸石、黄铁矿结核等样品中砷、硒含量进行对比分析。结果表明:西南地区乐平统龙潭组煤的砷、硒含量变化较大,但总体高于华北晚石炭世和早二叠世煤的砷、硒含量;西南二叠系乐平统龙潭组大多数的亮煤中砷、硒含量高于原煤全煤样(刻槽样)中的砷、硒含量,也远远高于同煤层煤矸石的含量,龙潭组部分亮煤的砷含量尤其高,为55~338 mg/kg,还发现砷含量为89 mg/kg的亮煤。但华北上石炭统-下二叠统的镜煤中的砷、硒含量与之相反,低于原煤全煤样的砷、硒含量,其中砷含量非常低,为063~129 mg/kg。说明西南地区上二叠统煤中的砷和硒与煤的有机质密切相关,可能主要来源于成煤古植物。在西南乐平世早、中期第Ⅰ幕陆生生物集群灭绝事件期间,陆生动物的食物--植物中有毒有害元素砷、硒含量明显增加,陆生环境或泥炭沼泽中可溶性砷、硒含量增加。  相似文献   

13.
中国成煤盆地类型多样、后期改造强烈,绝大多数成煤盆地已遭受破坏解体,煤系现今分布范围与原型盆地相去甚远。针对中国煤田构造的上述特点,以成煤盆地研究为基础,建立了成煤盆地原型综合分类方案,划分了我国主要成煤期的成煤盆地类型。采用赋煤构造单元的概念表征现今煤系赋存特点,认为煤田构造格局的形成和演化就是成煤盆地原型经历不同程度改造,形成现今各类赋煤单元的过程。晚古生代以来,中国大陆经历了海西、印支、燕山和喜马拉雅四大构造旋回,多期性质、方向、强度不同的构造运动,使各成煤期形成的不同类型的成煤盆地遭受不同程度的改造,原型盆地分解破坏、叠合反转,煤系发生变形、变位、变质作用,形成不同级别和不同构造属性的赋煤构造单元,由此决定了煤炭资源的现今赋存状态。   相似文献   

14.
The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizhou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54μg/g, much lower than that in most Chinese and worldwide coals. Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.  相似文献   

15.
The maceral and microlithotype compositions of coals representative of the different coal seams of the Ramagundam and Kothagudem coalfields, Godavari Valley Basin, are compared with those of the Ib River, Talcher, South Karanpura, Hura, and Brahmani coalfields. The vitrite + clarite—“Intermidiates”—durite + fusite + shale (<20%) triangular diagram places these coals in the area of non-coking coals, clearly distinct from the coking and semi-coking coals. The vitrinite reflectance is low (Rormoilaver: 0.38–0.71%), far below the coking-coal range. Thus, based on petrographic composition and rank, these coals are of non-coking nature. A triangular diagram is proposed delineating the coking, semi-coking and non-coking coal areas for the Gondwana coals of India.  相似文献   

16.
淮南煤田深部A组煤中有害微量元素地球化学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
以淮南煤田深部A 组煤为研究对象,全层刻槽采集了煤、夹矸和顶底板岩石样品,采用电感耦合等离子质谱仪 (ICP-MS) 测试分析了样品中13 种有害微量元素的含量,对比研究了其分布特征,结合Tessier 五步形态提取法和相关性分 析探讨了煤中有害微量元素的赋存形态。结果表明:(1) 与中国上陆壳中各种微量元素含量均值相比,淮南深部A 组煤中 B,As,Se,Mo,Cd,Pb,Hg 的富集系数均大于1,在A 组煤中表现为富集;A 组煤中B,As,Se,Cd 的含量均高于淮南煤 田上部B 组煤、华北煤以及中国煤中的含量均值;(2) 相关性分析和逐级提取实验结果表明,A 组煤中微量元素主要以残 渣态和铁锰氧化物结合态存在,两者质量分数之和达到55%~98%,其中Ni,Mo,Cd,Hg,Cu,Pb 和Zn 主要赋存于硫化物 矿物中,Mn 主要赋存于碳酸盐矿物中,V,Cr,Se,B 和As 主要赋存于硅铝酸盐等黏土矿物中。(3) B 元素示踪物源及沉 积环境结果显示,淮南煤田深部A 组煤成煤环境为海相咸水沉积环境,稳定的咸水沉积环境以及受海水影响等因素导致A 组煤中微量元素出现不同程度的富集。  相似文献   

17.
《Applied Geochemistry》2001,16(11-12):1353-1360
Southwest Guizhou Province is one of the most important areas of disseminated, sediment-hosted-type Au deposits in China and is an important area of coal production. The chemistry of most of the coals in SW Guizhou is similar to those in other parts of China. Their As content is near the Chinese coal average, but some local, small coal mines contain high As coals. The highest As content is up to 3.5 wt.% in the coal. The use of high As coals has caused in excess of 3000 cases of As poisoning in several villages. The high As coals are in the Longtan formation, which is an alternating marine facies and terrestrial facies. The coals are distributed on both sides of faults that parallel the regional anticlinal axis. The As content of coal is higher closer to the fault plane. The As content of coal changes greatly in different coal beds and different locations of the same bed. Geological structures such as anticlines, faults and sedimentary strata control the distribution of high As coals. Small Au deposits as well as Sb, Hg, and Th mineralization, are found near the high As coals. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, As-bearing clays, and phosphate are found in the high As coals, their contents cannot account for the abundance of As in some coals. Analysis of the coal indicates that As mainly exists in the form of As5+ and As3+, perhaps, combined with organic compounds. The occurrence of such exceptionally high As contents in coal and the fact that the As is dominantly organically associated are unique observations.  相似文献   

18.
鄂尔多斯盆地煤的灰分和硫、磷、氯含量研究   总被引:3,自引:0,他引:3  
详细阐述了鄂尔多斯盆地煤的灰分产率和硫、磷及氯含量的空间及垂向分布规律,并探讨了煤中硫。磷及氯含量的影响因素。研究结果表明,石炭-二叠纪煤以中灰煤为主,部分为高灰煤;低灰煤仅分布在局部地区,且灰分产率与全流呈负相关;延安组以特低灰—低灰煤为主,中灰煤次之,空间上灰分北高南低、东高西低;太原组以中高硫煤为主,山西组则以低硫煤为特征,空间上呈南高北低、西高车低之趋势;延安组亦以低硫煤为主。煤中形态硫以黄铁矿硫为主,有机硫次之,硫酸盐硫极少。从太原组到山西组再到延安组,煤中硫呈递减趋势,这与聚煤环境的变化密切相关。该盆地煤含磷低,少部分为特低磷煤。煤中氯的质量分数值平均为425.8×10-6,空间上中南部高、北西部低;垂向上,下部煤层中氯的含量高于中上部煤层,这可能与煤中氯的成因有关。  相似文献   

19.
煤中微量元素分布特征初步研究   总被引:10,自引:0,他引:10       下载免费PDF全文
 采自我国不同聚煤区的不同时代的89件煤样品,用中子活化分析法(INAA)分别测定了29种微量元素。据统计分析结果表明:(1)绝大多数微量元素的平均值高于世界的平均值,含量范围也较美国宽。我国各聚煤区不同时代间相比较,煤中大多数元素的平均含量和富集因数,从华南二叠纪至华北石炭—二叠纪到全国中-新生代逐渐降低。(2)中-新生代的煤中,元素间的相关性较好,华南二叠纪次之,而华北石炭—二叠纪的煤最差。(3)REE分布模式类型以中-新生代的煤最复杂;而华北石炭—二叠纪的煤较简单。  相似文献   

20.
煤中微量元素分布特征初步研究   总被引:32,自引:0,他引:32       下载免费PDF全文
采自我国不同聚煤区的不同时代的89件煤样品,用中子活化分析法(INAA)分别测定了29种微量元素。据统计分析结果表明:(1)绝大多数微量元素的平均值高于世界的平均值,含量范围也较美国宽。我国各聚煤区不同时代间相比较,煤中大多数元素的平均含量和富集因数,从华南二叠纪至华北石炭—二叠纪到全国中-新生代逐渐降低。(2)中-新生代的煤中,元素间的相关性较好,华南二叠纪次之,而华北石炭—二叠纪的煤最差。(3)REE分布模式类型以中-新生代的煤最复杂;而华北石炭—二叠纪的煤较简单。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号