首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Analysis of magnetograph recordings made simultaneously in different spectral lines have shown that the quiet-region network and active-region plages with average field strengths less than about 100 G are made up by the same type of elementary structures, each having the same physical properties. Magnetograph data are used together with continuum, line profile, and EUV data to derive a model of these subarcsec, spatially unresolved elementary structures. The field strength at the center of each basic element is about 2 kG. The temperature enhancement starts at a height of about 180 km (above the level 0 = 1 in HSRA), and increases rapidly with height. The brightness structures are coarser than the magnetic-field structures.The magnetic field cannot be contained by either gas pressure or dynamic pressure. The magnetic pressure must be balanced by the constricting force of strong electric currents along the magnetic filaments (pinch effect). A mechanism is proposed for the amplification of the field, involving vortex motions around the downdrafts in the network and plages. Efficient heating by hydromagnetic waves builds up an excess gas pressure inside the twisted fluxropes. The excess pressure is released by the ejection of spicules, which have to move out along the helically shaped field lines and thereby will acquire a spinning motion.The continuum emission in the fluxropes, which are located in the intergranular lanes, washes out the contrast between cell interiors and cell boundaries and creates an abnormal granulation pattern. When more and more magnetic flux is brought into a given area, the interaction between the fluxropes and the granulation starts to change the physical structure of the fluxropes. This begins at an average field B obs 100 G, with a gradual transition to pores and sunspots as b obs is increased.  相似文献   

2.
Joel E. Tohline 《Icarus》1985,61(1):10-21
The scalar virial equation can be used to elucidate many interesting properties of equilibrium gas clouds when the effects of surface pressure, rotation, self-gravity, and internal isothermal gas pressure are considered simultaneously. Details regarding the internal structure of rotating isothermal gas clouds are ignored in order to obtain an analytical expression describing global cloud properties. Excellent agreement is obtained between the simple analytical model and other previously published, more detailed models in physical regimes where other models have been constructed. For the first time, a physical connection is drawn between the surface-pressure-dominated equilibrium models of S. W. Stahler (1983, Astrophys. J.268, 155–184) and the rotation-dominated models of C. Hayashi, S. Narita, and S. M. Miyama (1982, Prog. Theor. Phys.68, 1949–1966). Stable axisymmetric models of any mass and angular momentum can be constructed. Using the analytic expression for virial equilibrium as a foundation, all rotating, isothermal collapse calculations can now be well understood. Limiting properties of isothermal clouds are outlined, and realistic “starting” models for cloud collapse are proposed.  相似文献   

3.
对分子云中甲醛的辐射传能问题用大速度梯度模型进行了分析和计算,以图解形式表示出气体温度为10K,20K,40K及70K的计算结果。表明在相似分辨率下的H_2CO 1_(10)—1_(11)和2_(11)—2_(12)谱线观测可以确定分子云中的气体密度和甲醛丰度。在20K—100K范围内,结果对气体温度的依赖并不十分强。 确定了Cirrus 7核区的某些物理参数。考虑到周围低密度气体的压力,用维里定理考察了此核区的稳定性,发现它是引力束缚的,可能处于动力学平衡状态,也可能坍缩形成低质量恒星。  相似文献   

4.
5.
富坚 《天文学进展》2011,(4):473-476
星际气体是星系中重子物质的重要组成部分,其中的分子气体(主要是分子氢H2)以及原子气体(主要是中性氢HI)对于星系中发生的各个物理过程至关重要。本文在前人的星系形成和演化的半解析模型基础上,加入了描述星系盘中分子气体和原子气体成分的物理模型,来研究分子气体和原子气体对于星系形成和演化所起的作用。我们主要使用了马普天体物理所Munich Group的L-Galaxies半解析星系形成模型,并借鉴了星系化学演化模型的方法,把半解析模型中的每一个星系盘分成了多个同心圆圈,然后在每个圈中分别追踪气体下落、分子气体和原子气体转化、恒星形成、金属增丰、超新星爆发加热冷气体等发生在星系盘上的物理过程,并且每个同心圈都是独立演化的。在我们的模型中,一个基本假设是每个时间步内气体都是以指数形式下落到星系盘上,并且直接叠加在已有的气体径向面密度轮廓之上,其中指数盘的标长rd正比于星系所在暗物质晕的维里半径rvir与旋转参量λ的乘积。我们的模型使用了两种描述分子气体形成的模型:一种是基于Krumholz等人解析模型的结果,其中分子气体的比例与局域气体面密度以及局域气体金属丰度相关;另一种是分子气体比例与星际压强相关的模型,根据Obreschkow等人的近似,分子气体的比例与气体面密度以及恒星质量面密度相关。由于恒星形成过程发生在星际巨分子云之中,并且根据Leroy等人的观测结果,恒星形成率面密度近似正比于分子气体的面密度,因此我们在模型中使用了与分子气体面密度相关的恒星形成规律。  相似文献   

6.
The sample of nearby LIRGs and ULIRGs for which dense molecular gas tracers have been measured is building up, allowing for the study of the physical and chemical properties of the gas in the variety of objects in which the most intense star formation and/or AGN activity in the local universe is taking place. This characterisation is essential to understand the processes involved, discard others and help to interpret the powerful starbursts and AGNs at high redshift that are currently being discovered and that will routinely be mapped by ALMA. We have studied the properties of the dense molecular gas in a sample of 17 nearby LIRGs and ULIRGs through millimeter observations of several molecules (HCO+, HCN, CN, HNC and CS) that trace different physical and chemical conditions of the dense gas in these extreme objects. In this paper we present the results of our HCO+ and HCN observations. We conclude that the very large range of measured line luminosity ratios for these two molecules severely questions the use of a unique molecular tracer to derive the dense gas mass in these galaxies.  相似文献   

7.
8.
We present a spectroscopic investigation of an unusual cluster of galaxies that contains galaxies Mrk 261 and 262 which have ultraviolet excess at the same redshift of about 0.03. We also study Mrk 266, which has a peculiar optical morphology and a binary nucleus. The nuclear components in both of these samples show quite similar emission lines in their spectra to Seyfert galaxy activity characteristics. The kinematics and physical properties of the gas in Mrk 266 allow a reliable mass estimate to be made assuming that the characteristic broad emission lines arise from the photoionization of the virialized clouds by the central ionizing nucleus. However, the nuclei masses would be overestimated if the radiation pressure and/or magnetic fields contribute significantly to the dynamics, or if the outflows or winds could cause the observed linewidths to exceed those induced by the nucleus potential alone.  相似文献   

9.
Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a ‘honeycomb’ structure created by sublimation. This ice could have a density as low as c. 450 kg m−3 and a thermal conductivity as low as 1.6 W m−1 K−1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will act to reduce the surface temperature, and hence rate of sublimation, thereby prolonging the lifespan of any liquid water beneath.  相似文献   

10.
We study motions of galaxies in galaxy clusters formed in the concordance Λ cold dark matter cosmology. We use high-resolution cosmological simulations that follow the dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing the motions of galaxies and the properties of intracluster gas in a sample of eight simulated clusters at z = 0, we study the velocity dispersion profiles of the dark matter, gas and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ≈1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient in our simulations. We also find that galaxies move slightly faster than the dark matter particles. The magnitude of the velocity bias,   b v ≈ 1.1  , is, however, smaller than the bias estimated for subhaloes in dissipationless simulations. Interestingly, we find velocity bias in the tangential component of the velocity dispersion, but not in the radial component. Finally, we find significant random bulk motions of gas. The typical gas velocities are of order ≈20–30 per cent of the gas sound speed. These random motions provide about 10 per cent of the total pressure support in our simulated clusters. The non-thermal pressure support, if neglected, will bias measurements of the total mass in the hydrostatic analyses of the X-ray cluster observations.  相似文献   

11.
We study the steady-state structure of an accretion disc with a corona surrounding a central, rotating, magnetized star. We assume that the magneto-rotational instability is the dominant mechanism of angular momentum transport inside the disc and is responsible for producing magnetic tubes above the disc. In our model, a fraction of the dissipated energy inside the disc is transported to the corona via these magnetic tubes. This energy exchange from the disc to the corona which depends on the disc physical properties is modified because of the magnetic interaction between the stellar magnetic field and the accretion disc. According to our fully analytical solutions for such a system, the existence of a corona not only increases the surface density but reduces the temperature of the accretion disc. Also, the presence of a corona enhances the ratio of gas pressure to the total pressure. Our solutions show that when the strength of the magnetic field of the central neutron star is large or the star is rotating fast enough, profiles of the physical variables of the disc significantly modify due to the existence of a corona.  相似文献   

12.
By analyzing the Chandra data of the central region of the galaxy cluster PKS 0745-191, the properties of a patch of bright X-ray gas distributed along the radio structure in the west of the central galaxy are investigated. This gas is found to be cooler and denser than the ambient gas. According to the calculation based on radio observations, the pressure gradient of the radio gas in the west is greater than that in the east. It means that there is interaction between that patch of cool X-ray gas and the radio gas. The cool gas is either formed by outer cool gas supported and disturbed by the radio gas, or is brought out from the central galaxy by radio buoyant bubbles. Assuming that the gas is in pressure-gravity balance, the volume filling factor of the X-ray gas in the central region is calculated to be b = 0.69 ± 0.28, and the properties of the relativistic particles in the radio gas, as well as the expansion effect of the radio gas on the cooling flow, are discussed.  相似文献   

13.
Micro-computed tomography (μCT) is a fast and powerful technology for studying textural, physical, and chemical properties of solid objects in three dimensions. While regularly used for sample documentation and curation, it is often assumed that μCT techniques are essentially nondestructive or at least very little destructive. However, there are very few studies proving or rejecting the assumption of nondestructiveness. Here we study whether X-ray tomographic imaging affects the noble gas budget of matrix samples from the CV3 carbonaceous chondrite Allende. We irradiated powdered and homogenized matrix samples in the Bruker SkyScan 1272 μCT instrument at three different X-ray tube acceleration voltages of 30, 70, and 100 keV. By comparing the noble gas concentrations and especially the elemental and isotopic ratios of the irradiated samples with data for two non-irradiated aliquots, we found no significant differences. Our study therefore demonstrates that X-ray tomographic imaging has no measurable effect on the noble gas budget and can therefore safely be used for sample characterization prior to noble gas studies.  相似文献   

14.
Summary The nuclear regions of many galaxies are not accessible at optical wavelengths and are devoid of HI, but contain large quantities of molecular gas and dust. With recent advances in instrumentation it is now possible to probe the kinematics and physical state of the cool dense interstellar medium, thus providing a new and important tool to investigate the circumnuclear gas in galaxies that are more active than our own. The scope of this review is to summarize results related to the subject with an emphasis on observational data. Sects. 1 and 2 present a general introduction, followed by a discussion of molecular mass estimates. In Sect. 3 correlations between nuclear and global galactic properties are discussed. Sects. 4 and 5 summarize observational results for nearby strongly interacting galaxies, properties of molecular bars and rings, and theoretical advances in modelling the data. The main part of the review (Sects. 6–8) describes the kinematics and the physical and chemical properties of the dense gas, including masers, and compares them with the nuclear region of the Galaxy. Molecular gas in distant galaxies and the evolution of active galaxies are discussed in Sect. 9. Some promising avenues for future research are outlined in Sect. 10.  相似文献   

15.
Numerical simulations predict that metal-poor gas accretion from the cosmic web fuels the formation of disk galaxies. This paper discusses how cosmic gas accretion controls star formation, and summarizes the physical properties expected for the cosmic gas accreted by galaxies. The paper also collects observational evidence for gas accretion sustaining star formation. It reviews evidence inferred from neutral and ionized hydrogen, as well as from stars. A number of properties characterizing large samples of star-forming galaxies can be explained by metal-poor gas accretion, in particular, the relationship among stellar mass, metallicity, and star-formation rate (the so-called fundamental metallicity relationship). They are put forward and analyzed. Theory predicts gas accretion to be particularly important at high redshift, so indications based on distant objects are reviewed, including the global star-formation history of the universe, and the gas around galaxies as inferred from absorption features in the spectra of background sources.  相似文献   

16.
The physical conditions under which suprathermal grains can be produced when they are accelerated by radiation pressure against the drag of the ambient gas are investigated. It is found that in general it is very difficult to produce such grains though there are regions where their existence is probable.  相似文献   

17.
It is evident from eclipse photographs that gas-magnetic field interactions are important in determining the structure and dynamical properties of the solar corona and interplanetary medium. Close to the Sun in regions of strong field, the coronal gas can be contained within closed loop structures. However, since the field in these regions decreases outward rapidly, the pressure and inertial forces of the solar wind eventually dominate and distend the field outward into interplanetary space. The complete geometrical and dynamical state is determined by a complex interplay of inertial, pressure, gravitational, and magnetic forces. The present paper is oriented toward the understanding of this interaction. The helmet streamer type configuration with its associated neutral point and sheet currents is of central importance in this problem and is, therefore, considered in some detail.Integration of the relevant partial differential equations is made tractable by an iterative technique consisting of three basic stages, which are described at length. A sample solution obtained by this method is presented and its physical properties discussed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics to study the formation of the first luminous objects in the Lambda cold dark matter cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects span formation redshifts from   z ∼ 10  to ∼50 and cover an order of magnitude in halo mass. We find that the physical properties of the central star-forming clouds are very similar in all of the simulated objects despite significant differences in formation redshift and environment. This suggests that the formation path of the first stars is largely independent of the collapse redshift; the physical properties of the clouds have little correlation with spin, mass or assembly history of the host halo. The collapse of protostellar objects at higher redshifts progresses much more rapidly due to the higher densities, which accelerates the formation of molecular hydrogen, enhances initial cooling and shortens the dynamical time-scales. The mass of the star-forming clouds cover a broad range, from a few hundred to a few thousand solar masses, and exhibit various morphologies: some have disc-like structures which are nearly rotational supported; others form flattened spheroids; still others form bars. All of them develop a single protostellar 'seed' which does not fragment into multiple objects up to the moment that the central gas becomes optically thick to H2 cooling lines. At this time, the instantaneous mass accretion rate on to the centre varies significantly from object to object, with disc-like structures having the smallest mass accretion rates. The formation epoch and properties of the star-forming clouds are sensitive to the values of cosmological parameters.  相似文献   

19.
A numerical study of gas flow through a porous cometary mantle is presented. A kinetic model based on the well-known Test Particle Monte Carlo Method for the solution of rarefied gas dynamics problems is proposed. The physical model consists of two spatial plane regions: the condensed ice phase and a porous dust mantle. The structure of the porous dust layer is described as a bundle of cylindrical inclined channels not crossing each other. A vertical temperature gradient may exist across the dust mantle. The aim is to investigate how the characteristics of molecular flow depend on the capillary length, inclination angle, and temperature gradient. Examples illustrating a significant deviation of some results from equilibrium values are shown. In particular, the gas velocity distribution at both ends of the pore is strongly non-Maxwellian if there is an important temperature contrast across the pore. The emergent gas flow rate is found to vary with the pore length/radius ratio in excellent agreement with Clausing's empirical formula. The degree of collimation of the flow is quantitatively studied as a function of the length/radius ratio, and consequences for the jet force of outgassing through a dust mantle or, indeed, a rough surface are estimated.  相似文献   

20.
In this paper, we analyze the physical properties of dark mottles in the chromospheric network using two‐dimensional spectroscopic observations in Hα obtained with the Göttingen Fabry‐Perot Spectrometer in the Vacuum Tower Telescope at the Observatory del Teide, Tenerife. Cloud modeling was applied to measure the mottles' optical thickness, source function, Doppler width, and line‐of‐sight velocity. Using these measurements, the number density of hydrogen atoms in levels 1 and 2, total particle density, electron density, temperature, gas pressure, and mass density parameters were determined with the method of Tsiropoula & Schmieder (1997). We also analyzed the temporal behaviour of a mottle using cloud parameters. Our result shows that it is dominated by 3 minute signals in source function, and 5 minutes or more in velocity (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号