首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

2.
The present work involves the study of Se(IV) adsorption onto bagasse fly ash. The adsorbents were coated with a ferric chloride solution for the effective removal of selenium. The physico‐chemical characterization of the adsorbent was carried out using standard methods, e. g., proximate analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo‐gravimetric analysis and differential thermal analysis. Batch experiments were carried out to determine the effect of various parameters such as adsorbent dose, initial pH, contact time, and temperature on the adsorption process. Results obtained from these studies were analyzed using various kinetic models and isotherms. Se(IV) adsorption onto adsorbent was high at low pH values, and decreased with an increase in initial pH. A temperature study showed that the uptake of Se(IV) was greatest at 293 K, within the temperature range studied. The parameters of pseudo first order, pseudo second order, and Weber‐Morris intra‐particle kinetic models were determined. Equilibrium isotherms were analyzed using Langmuir, Freundlich, and Temkin isotherms. Error analyses were also carried out using hybrid fractional error function and Marquardt's percent standard deviation.  相似文献   

3.
The adsorption of nickel and copper in a bicomponent system using the nonliving biomass of the marine brown alga Laminaria japonica was investigated in batch systems as a function of initial solution pH, contact time and temperature. The adsorption of nickel and copper was strongly pH dependent. Kinetic studies pointed to a rapid uptake with an equilibrium time of about 30 min. The kinetic curves were successfully fitted by linear regression to pseudo first and pseudo‐second‐order equations. The equilibrium data was analyzed using several models, including the extended Langmuir equation, modified extended Langmuir model and combined extended Langmuir‐Freundlich model. The results suggested that the competitive adsorption of nickel and copper at all temperatures was best represented by the combined extended Langmuir‐Freundlich isotherm. The isotherms indicated competitive uptake, with copper being preferentially adsorbed followed by nickel with an increase in the amount of solute in solution. Thermodynamic analysis revealed that the simultaneous adsorption of nickel and copper ions could be considered to be a spontaneous, endothermic process, with increased randomness.  相似文献   

4.
Adsorption and oxidative transformation processes critically affect the mobility and toxicity of arsenic (As) in the environment. In this study, the detoxification of arsenite through adsorption and oxidation by pyrolusite was systematically investigated. Disappearance of aqueous As(III) in the solution can be efficiently achieved using pyrolusite. The As(III) oxidative transformation product arsenate or As(V) was obtained both in the solution and on the pyrolusite surface. The arsenic species adsorbed on pyrolusite exist in two forms: As(III) and As(V). Furthermore, over 64.8% of the adsorbed As cannot be desorbed. They were fixed more stably in the structure of the mineral to achieve a safer removal. Lower As(III) initial concentration increased As(III) detoxification rates. Elevating the reaction pH from 4.5 to 7.9 elicited a slight effect on the disappearance rate of As(III). Efficient As(III) detoxification can be achieved by pryrolusite within the studied pH range. The addition of low‐molecular‐weight carboxylic acids decreased the detoxification rate of As(III) through competition for active sites on pyrolusite. Co‐existing divalent metal ions, such as Ca2+, Ni2+, and Mn2+, also decreased the detoxification rate of As(III). However, the trivalent ion Cr3+ largely increased the detoxification rate through co‐precipitation and adsorption processes.  相似文献   

5.
This paper deals with kinetics and equilibrium studies on the adsorption of arsenic species from simulated groundwater containing arsenic (As(III)/As(V), 1:1), Fe, and Mn in concentrations of 0.188, 2.8, and 0.6 mg/L, respectively, by Ca2+ impregnated granular activated charcoal (GAC‐Ca). Effects of agitation period and initial arsenic concentration on the removal of arsenic species have also been described. Although, most of the arsenic species are adsorbed within 10 h of agitation, equilibrium reaches after ~24 h. Amongst various kinetic models investigated, the pseudo second order model is more adequate to explain the adsorption kinetics and film diffusion is found to be the rate controlling step for the adsorption of arsenic species on GAC‐Ca. Freundlich isotherm is adequate to explain the adsorption equilibrium. However, empirical polynomial isotherm gives more accurate prediction on equilibrium specific uptakes of arsenic species. Maximum specific uptake (qmax) for the adsorption of As(T) as obtained from Langmuir isotherm is 135 µg/g.  相似文献   

6.
Batch sorption experiments were carried out for the adsorption of the basic dye Rhodamine B from aqueous solution using baryte as the adsorbent. The effect of adsorbent dosage, temperature, initial dye concentration and pH were studied. Adsorption data were modeled using first and second order kinetic equations and the intra particle diffusion model. Kinetic studies showed that the adsorption process followed second order rate kinetics with an average rate constant of 0.05458 g mg–1 min–1. Dye adsorption equilibrium was attained rapidly after 30 min of contact time. The equilibrium data was fitted to the Langmuir, Freundlich and Tempkin isotherms over a dye concentration range of 50–250 mg/L. The adsorption thermodynamic parameters showed that adsorption was an exothermic, spontaneous and less ordered arrangement process. The adsorbent, baryte, was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The results showed that baryte has good potential for the removal of Rhodamine B from dilute aqueous solution.  相似文献   

7.
Adsorption of reactive black 5 (RB5) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Adsorption data obtained from different batch experiments were modeled using both pseudo first‐ and second‐order kinetic equations. The equilibrium adsorption data were fitted to the Freundlich, Tempkin, and Langmuir isotherms over a dye concentration range of 45–100 µmol/L. The best results were achieved with the pseudo second‐order kinetic and Langmuir isotherm equilibrium models, respectively. The equilibrium adsorption capacity (qe) was increased with increasing the initial dye concentration and solution temperature, and decreasing solution pH. The chitosan flakes for the adsorption of the dye was regenerated efficiently through the alkaline solution and was then reused for dye removal. The activation energy (Ea) of sorption kinetics was estimated to be 13.88 kJ/mol. Thermodynamic parameters such as changes in free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) were evaluated by applying the van't Hoff equation. The thermodynamics of reactive dye adsorption by chitosan indicates its spontaneous and endothermic nature.  相似文献   

8.
Biomass char (BC) deriving from fast pyrolysis of biomass was a potential adsorption material due to its relative high fixed‐carbon content and the inherent porous structures. Adsorption of phosphate from aqueous solution by BC was investigated in this paper. The results showed that the adsorption capacity of BC was dependent on pyrolysis conditions, such as temperature and holding time. The maximum adsorption capacity for phosphate was approximately 15.11 mg g?1 at 298 K. The pseudo‐second order model of the adsorption kinetics indicated that the adsorption process was complex and several mechanisms were involved. Equilibrium isotherm was satisfactorily followed the Freundlich isotherm model. The KF value in Freundlich equation gradually increased with elevating temperature. Moreover, the thermodynamic constants: ΔG0, ΔH0, and ΔS0 were evaluated as ?6.49 kJ mol?1 (at 298 K), 13.41 kJ mol?1, and 66.70 J mol?1 K?1, respectively. Phosphate adsorption onto BC was spontaneous and endothermic. As a waste, BC was a potentially attractive adsorbent for phosphate removal from aqueous solution with low cost and high capability.  相似文献   

9.
10.
11.
The present investigation evaluates the adsorption effectiveness of Cd(II) ions on Ficus religiosa leaf powder (FRL). The experimental parameters chosen included time, pH, particle size, temperature, adsorbate, anion, and Pb(II) concentrations. The time data followed pseudo‐second‐order kinetics. Cd(II) adsorption increased from 1.38 to 75.17% with the increase in pH from 2 to 4 and further increase in pH to 5.5 resulted in its marginal increase to 77.52%. Based on regression coefficient values, the isothermic data fitted the various models in the order Langmuir > Redlich–Peterson > Temkin > Freundlich model. The maximum loading capacity of FRL was estimated to be 27.14 mg g?1. The presence of Cl?, , or Pb2+ exhibited adverse effect on Cd(II) uptake. The thermodynamic parameters of enthalpy (ΔH0) and entropy (ΔS0) were estimated to be 8.31 kJ mol?1 and 38.22 J mol?1 K?1, respectively. SEM‐EPMA of the loaded FRL showed Cd(II) distribution at specific sites. The XRD patterns of Cd(II) loaded FRL sample showed disappearance of some peaks corresponding to β‐Ca(PO3)2; shifting of peaks and decrease in %RI corresponding to γ‐CaSO4 phase. Positive shift of IR bands for the Cd(II) loaded sample was observed.  相似文献   

12.
13.
This paper is an experimental investigation into the removal of arsenic species from simulated groundwater by adsorption onto Ca2+ impregnated granular activated carbon (GAC‐Ca) in the presence of impurities like Fe and Mn. The effects of adsorbent concentration, pH and temperature on the percentage removal of total arsenic (As(T)), As(III) and As(V) have been discussed. Under the experimental conditions, the optimum adsorbent concentration of GAC‐Ca was found to be 8 g/L with an agitation time of 24 h, which reduced As(T) concentration from 188 to 10 μg/L. Maximum removal of As(V) and As(III) was observed in a pH range of 7–11 and 9–11, respectively. Removal of all the above arsenic species decreased slightly with increasing temperature. The presence of Fe and Mn increased the adsorption of arsenic species. Under the experimental conditions at 30°C, the maximum percentage removals of As(T), As(III), As(V), Fe, and Mn were found to be ca. 94.3, 90.6, 98.0, 100 and 63%, respectively. It was also observed that amongst the various regenerating liquids used, a 5 N H2SO4 solution exhibited maximum regeneration (ca. 91%) of the spent GAC‐Ca.  相似文献   

14.
Coconut coir pith, a lignocellulosic polymer, is an unwanted by‐product of the coir fiber industry. The pith was used as a biosorbent for the removal of Molybdenum(VI) after modification with a cationic surfactant, hexadecyltrimethylammonium bromide. The optimum pH for maximum adsorption of Mo(VI) was found to be 3.0. Langmuir, Freundlich and Dubinin Radushkevich isotherms were used to model the adsorption equilibrium data and the system was seen to follow all three isotherms. The Langmuir adsorption capacity of the biosorbent was found to be 57.5 mg g–1. Kinetic studies showed that the adsorption generally obeyed a second‐order kinetic model. Desorption studies showed that the recovery of Mo(VI) from the spent adsorbent was feasible. The effect of foreign anions on the adsorption of Mo(VI) was also examined.  相似文献   

15.
This study was designed to examine the environmental exposure of surface‐ and groundwater pollution in remote mountainous regions of northern Vietnam. In 2008, we monitored the loss of four commonly applied pesticides (imidacloprid, fenitrothion, fenobucarb, dichlorvos) from paddy rice farming systems to a receiving stream on the watershed scale and quantified groundwater pollution. For the entire monitoring period, runoff loss of pesticides from the watershed was estimated to range between 0.4% (dichlorvos) and 16% (fenitrothion) of the total applied mass. These losses were correlated well with the octanol–water partition coefficient and water solubility of pesticides (r2 = 0.78–0.99). In the groundwater collected from eight wells, all target pesticides were frequently detected. Maximum measured concentrations were 0.47, 0.22, 0.17, and 0.07 µg L?1 for fenitrothion, imidacloprid, fenobucarb, and dichlorvos, respectively. Our results strongly indicate that under the current management practice pesticide use in paddy fields poses a serious environmental problem in mountainous regions of northern Vietnam.  相似文献   

16.
17.
Xanthoceras sorbifolia seed coat (XSSC), a bioenergy forest waste, was used for the adsorption of methylene blue (MB) from aqueous solutions. The effects of adsorbent dosage, pH, adsorbate concentration and contact time on MB biosorption were studied. The equilibrium adsorption data was analyzed by Langmuir and Freundlich isotherm models. The results indicated that the Langmuir model provided the best correlation with the experimental data. The adsorption capacity of XSSC for MB was determined with the Langmuir model and was found to be 178.6 mg/g at 298 K. The adsorption kinetic data was modeled using the pseudo‐first order, pseudo‐second order, and intraparticle diffusion kinetic equations. It was seen that the pseudo‐second order equation could describe the adsorption kinetics, and intraparticle diffusion was not the sole rate controlling factor. Thermodynamic parameters were also evaluated. Standard Gibbs free energy was spontaneous for all interactions, and the biosorption process exhibited exothermic standard enthalpy values. The results indicated that XSSC is an attractive alternative for removing cationic dyes from wastewater.  相似文献   

18.
Pesticide sorption on to the soil has a significant role in deciding the fate and behavior of pesticides in soil and aquatic environment. The present study investigates the adsorption of monocrotophos (MCP) and dichlorvos (DDVP) on the three soils of Malwa region of Punjab, India under different conditions. Batch adsorption experiments were preformed in replicates using 2 g of air‐dried soil and varying concentrations of pesticides and 20 mL of 0.01 M CaCl2 as background electrolyte. The results revealed high adsorption of MCP and DDVP in soil B with kf‐values 0.1261 and 0.0498 and n‐values 2.7345 and 1.831, respectively. The adsorption isotherms obtained were analyzed and the data was subjected to classical Langmuir, Freundlich, and Temkin models. The experimental data best fitted to the logarithm form of Freundlich and Temkin model. Kinetics analyses were performed using pseudo‐first order, pseudo‐second order, and intraparticle diffusion models. The regression results showed that the experimental data fitted very well with the pseudo‐second order kinetic model as correlation coefficient value is very closer to 1 and also followed the intraparticle diffusion model, whereas, diffusion is not only the rate controlling step. The percentages desorption with tap and distilled water is 32–64% for MCP and 25–48% for DDVP.  相似文献   

19.
Due to the unique chemical properties and therefore wide range of applications, significant amounts of reactive dyes often end up in waste waters and this issue raises the need for more efficient treatment technologies. This work investigates the ability of magnetite nanoparticles functionalized with imidazolium based ionic liquid (IL) as an efficient sorbent for the removal of the Reactive black 5 from wastewater. Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, thermo‐gravimetric analysis, and zeta potential measurement were used to characterize the synthesized nanosorbent. The results showed that under optimal conditions, the dye removal efficiency of the grafted IL is 98.5% after a single run. Regeneration of the used sorbent could be possible and the modified magnetic nanoparticles exhibited good reusability. The isothermal data of RB5 sorption conformed well to the Langmuir model and the maximum sorption capacity of IL@Fe3O4 for RB5 was 161.29 mg g?1. Thermodynamic study indicated that the adsorption is endothermic and spontaneous. The use of such a system can provide fast and efficient removal of the reactive dyes from wastewater by using an external magnetic field.  相似文献   

20.
Micropollutants cover a variety of compounds that mainly originate from the pharmaceutical and agricultural sectors. Even at trace concentrations, the discharge of micropollutants into water bodies pose a serious threat to the environment and human health. Their removal from wastewaters at treatment plants before their discharge into the environment has become one of the leading topics of research. Physical, chemical, and biological treatment methods have been listed in the literature for efficient removal of a variety of pollutants. In this study, seven micropollutants, namely 4‐tert‐octylphenol, atrazine, 2,4,6‐trichlorophenol, fluoxetine, estrone, penconazole, and di‐n‐octyl phthalate, are spiked into municipal simulated synthetic wastewater and treated by a laboratory‐scale electrooxidation (EO) system using oxidized titanium and graphite electrode as anode and cathode, respectively. Sensitive determination of the selected micropollutants by gas chromatography–mass spectrometry (GC‐MS) before and after treatment is performed after their pre‐concentration using an eco‐friendly switchable solvent liquid‐phase microextraction method (SSLPME). The pH value, applied current, and reaction period are optimized to enhance the removal efficiency of micropollutants. Results show that the highest removal efficiency of all micropollutants is obtained at pH 3, 20 min reaction period, and 3 A applied current. The operational costs are also investigated in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号