首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
The presence of acid pharmaceuticals in water environments poses a potential threat to ecosystems and human health. Recent research has shown that photo oxidation processes are much more effective for removing these pharmaceuticals. However, the existence of humic acid (HA) could inhibit the clearance efficiency of this process. In this study, we investigated the photochemical degradation of six selected acid pharmaceuticals in surface water and effluent from wastewater treatment plants using the UV/H2O2 process. The results showed that HA can act as a photo sensitizer or a . OH sink, and its concentration had a significant inhibitory effect on the degradation of acid pharmaceuticals. Most of these pharmaceuticals were inhibited during this process when HA was added to deionized water solutions. In addition, the effects of chloride, bicarbonate, and nitrate on the degradation of these pharmaceuticals were different. The removal efficiency of these acid pharmaceuticals is lower in natural samples than in deionized samples because of the complex constituents in the latter.  相似文献   

2.
In this work, the treatment of actual agro‐industrial wastewaters (IWW) by a UV/H2O2 process has been investigated. The aqueous wastes were received from industrial olive oil mills and then treated by laboratory scale physicochemical methods, i. e., coagulation using ferrous and aluminum sulfate, decantation, filtration and adsorption on activated carbon. These wastes are brown colored effluents and have a residual chemical oxygen demand (COD) in the range of 1800 to 3500 mgO2 L–1, which cannot be further eliminated with physicochemical processes. The UV/H2O2 treatments were carried out under monochromatic irradiation at 254 nm using a thermostated reactor equipped with a mercury vapor lamp located in an axial position. The effects of initial H2O2 concentration, initial COD, pH and temperature have been studied in order to determine the optimum conditions for maximum color and COD removals. The experimental results reveal the suitability of the UV/H2O2 process for both removal of high levels of COD and effectively decolorizing the solution. In particular, 95% of color removal and 90% of COD removal were obtained under conditions of pH = 5 and 32°C using 2.75 g H2O2 g–1 COD L–1 during 6 h of UV‐irradiation. The treatment is unaffected by pH over the range 2 to 9. In addition, the COD removal is improved by increasing the temperature, whereas the color removal has not been affected by this parameter. The results show that the hydroxyl radicals generated from the catalytic decomposition of H2O2 by UV‐irradiation of the solution could be successfully used to mineralize the organics contained in IWW. The mineralization of the organics seems to occur in three main sequential steps: the first is the rapid decomposition of tannins leading to aromatic compounds, which are confirmed by the decolorization of the IWW; the second step corresponds to the oxidation of aromatics leading to aliphatic intermediates, which occurs by the cleavage of an aromatic ring, and is established by the removal of aromatics, and the final step is the slow oxidation of the aliphatic intermediates, which is measured by the COD removal.  相似文献   

3.
4.
5.
Coal fly ash (CFA) and paper waste (PW) related environmental problems and its recycling techniques have been a major challenge to society. Therefore, it is of crucial importance to develop new recycling methods for CFA and PW. This work proposes a potential new way of developing synthetic aggregates (SA) using CFA, PW, starch waste and ammonium sulfate (AS) as a granular nitrogen fertilizer medium, and their utilization as a soil amendment to improve crop production in the low productive acidic red soil of Okinawa, Japan. Three types of SA with three different nitrogen (N) percentages were produced and used to amend acidic red soil in a pot experiment for the cultivation of Komatsuna, which is also called as Japanese mustard spinach (Brassica rapa var. pervidis). SA had a low bulk density (0.58–0.62 g/cm3), high water holding capacity (0.60–0.64 kg/kg), high saturated hydraulic conductivity (2.34·10–2 cm/s), high mean weight diameter (MWD) (4.32–4.48 mm), alkaline pH (8.58–8.61), high electrical conductivity (EC) (82.18–84.35 mS/m) and high carbon (C) content (68.71–70.07 g/kg) in comparison with the acidic red soil. The trace element concentrations of the developed SA were below the maximum pollutant concentration of individual metals for land application of sewage sludge given by the US Environmental Protection Agency. Scanning electron microscopic (SEM) studies showed the higher structural surface area of SA, where round shaped CFA particles were embedded into the fibrous PW matrix. Incorporation of SA into the acidic red soil not only enhanced soil fertility but also improved the physical and chemical properties of the soil compared to soil without SA addition. SA addition to the acidic red soil significantly increased the growth and yield parameters of Komatsuna compared to soil without SA addition.  相似文献   

6.
Water samples were collected from cold and warm karst springs for stable isotopes (δ18O and δD) and 3H from SE of Kashmir valley (western Himalayas) to distinguish the sources of recharge and infer their recharge areas. The spring water samples were most depleted in heavier isotopes in May (average δ18O: ?8.87‰ and δD: ?50.3‰) and enriched in September (average δ18O: ?7.58‰ and δD: ?48.1‰). The depleted 18O and 2H of spring waters bear the signatures of winter precipitation while as the enriched 18O and 2H of spring waters bear the signature of summer rainfall. D‐excess and 3H corroborate with the stable isotope results that the spring flow in spring season (May) and autumn (September) is dominantly controlled by the melting of winter snowmelt and summer rainfall, respectively. The results showed that unlike δD, the δ18O value in the karst spring waters decreases in January suggesting δ18O shift. The spring water samples also fall above the Local Meteoric Water Line and Global Meteoric Water Line indicating the δ18O shift due to interaction of groundwater with the host carbonate rocks during its traverse. The mean elevation of the recharge areas of the springs using δ18O and δD tracers was also estimated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   

8.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Sedimentation may have a significant effect on the transport of solutes and environmental isotopes in sediment. The depth profiles of the Cl?, δ2H and δ18O in a borehole in the aquifer–aquitard system in the Pearl River Delta (PRD), China, were obtained by centrifuging the core sediment samples. A one‐dimensional model based on the sedimentation and sea level changes of the PRD during the Holocene was built to investigate numerically the transport mechanisms of Cl?, δ2H and δ18O. The sedimentation process was modelled as a moving boundary problem with the moving rate equal to the sedimentation rate. The model was calibrated and the parameters were obtained by comparing simulated and measured data. Very good agreement between all the three observed profiles and the simulated ones demonstrates the reliability of the model and the parameters. Simulation results show that the shapes of the curves are controlled by the combination of sedimentation and upper boundary conditions. Diffusion solely is adequate to reconstruct the observed profiles, which indicates that diffusion is the dominant vertical transport mechanism. The effective diffusion coefficients of the aquitard and the aquifer equal to 5.0 × 10?11 and 2.0 × 10?10 m2/s, respectively. The results of this study will help in understanding the transport mechanisms of solutes and environmental tracers in deltas with geology and hydrogeology similar to the PRD. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Computer aided multi-parameter signal correlation is used to develop a common high-precision age model for eight gravity cores from the subtropical and subantarctic South Atlantic. Since correlations between all pairs of multi-parameter sequences are used, and correlation errors between core pairs (A, B) and (B, C) are controlled by comparison with (A, C), the resulting age model is called a stratigraphic network. Precise inter-core correlation is achieved using high-resolution records of magnetic susceptibility κ, wet bulk density ρ and X-ray fluorescence scans of elemental composition. Additional δ18O records are available for two cores. The data indicate nearly undisturbed sediment series and the absence of significant hiatuses or turbidites. After establishing a high-precision common depth scale by synchronously correlating four densely measured parameters (Fe, Ca, κ, ρ), the final age model is obtained by simultaneously fitting the aligned δ18O and κ records of the stratigraphic network to orbitally tuned oxygen isotope [J. Imbrie, J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias, W. L. Prell, N. J. Shackleton, The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record, in: A. Berger, J. Imbrie, J. Hays, G. Kukla, B. Saltzman (Eds.), Milankovitch and Climate: Understanding the Response to Orbital Forcing, Reidel Publishing, Dordrecht, 1984, pp. 269-305; D. Martinson, N. Pisias, J. Hays, J. Imbrie, T. C. Moore Jr., N. Shackleton, Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300.000-Year chronostratigraphy, Quat. Res. 27 (1987) 1-29.] or susceptibility stacks [T. von Dobeneck, F.Schmieder, Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch Bands, in: G. Fischer, G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic, Springer-Verlag, Berlin (1999), pp. 601-633.]. Besides the detection and elimination of errors in single records, the stratigraphic network approach allows to check the intrinsic consistency of the final result by comparing it to the outcome of more restricted alignment procedures. The final South Atlantic stratigraphic network covers the last 400 kyr south and the last 1200 kyr north of the Subtropical Front (STF) and provides a highly precise age model across the STF representing extremely different sedimentary regimes. This allows to detect temporal shifts of the STF by mapping δMn / Fe. It turns out that the apparent STF movements by about 200 km are not directly related to marine oxygen isotope stages.  相似文献   

11.
Hydrophilic xenobiotics can be eliminated in the UV/H2O2-process. The oxidation in this process is enhanced by the photolytically generated HO radicals. Bicarbonate is able to scavenge HO radicals. So it was expected that the degradation rates of the investigated xenobiotics were affected by the influence of bicarbonate. In contrast to the widely described decrease of the degradation rate, a much more complex situation was found in this investigation. The degradation rates of 2-amino-1-naphthalenesulfonate and diphenyl-4-sulfonate were decreased and reached for high concentrations of bicarbonate the values of the photolytical degradation rate. The degradation of 4,4′-diaminostilbene-2,2′-disulfonate was accelerated significantly in the presence of bicarbonate. The degradation rate of EDTA was increased at small concentrations of bicarbonate and decreased at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号