首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
A study was made of the nitrogen (N) inputs to, and exports from, a stream draining a pasture catchment near Hamilton, New Zealand, in order to plan measures for minimizing N losses to natural waters. An estimated 7 kg N ha?1 was exported from the catchment during 1981 of which 86 per cent was in reduced forms (Kjeldahl-N, TKN) and the remainder as nitrate-N (NO3-N). Virtually all of the reduced N inputs came from saturated overland flow whereas NO3-N inputs were dominantly subsurface derived. The TKN exported by individual storm events could be predicted (R2 = 0.97) from peak flow and from the peak flow rate in the seven days preceding the storm. A TKN balance for eight events showed that except for large floods (return period approximately a year) the stream system was a net sink for TKN. During large floods, scouring of the organic rich seepage areas resulted in the stream system itself being a net source of TKN. Microbial assays for nitrification and denitrification activity indicated that the main nitrate source was the well-aerated greywacke and ash soils and that the permanently saturated seepage zones were a significant nitrate sink. An in-stream nitrate addition experiment showed that up to 20mg N m?2 h?1 was removed from the stream. Simultaneous measurements of in situ denitrification activity demonstrated that only about 1 per cent of this removal could be accounted for by denitrification. It was inferred that plant uptake was responsible for the remainder. Retention of near-stream seepage areas is suggested as a measure for minimizing NO3-N export, whilst removal of stock from seasonally saturated areas during periods of saturatior should reduce soil loss and hence TKN inputs to the stream.  相似文献   

7.
Sources of pollution discharges and water quality samples at 27 stations in 2006 in the coastal waters of Hebei Province, western Bohai Sea, have been analyzed in this study. Pollutant loads from industrial sewages have shown stronger impact on the water environment than those from the general sewages. Analysis indicates that pollution of COD is mainly resulted from land-based point pollutant sources. For phosphate concentration, non-point source pollution from coastal ocean (fishing and harbor areas) plays an important role. To assess the water quality conditions, Organic Pollution Index and Eutrophication Index have been used to quantify the level of water pollution and eutrophication conditions. Results show that pollution was much heavier in the dry season than flood season in 2006. Based on COD and phosphate concentrations, results show that waters near Shahe River, Douhe River, Yanghe River, and Luanhe River were heavily polluted. Water quality in the Qinhuangdao area was better than those in the Tangshan and Cangzhou areas.  相似文献   

8.
9.
10.
11.
12.
13.
In the Pearl River Delta (PRD), river water quality deteriorates continually due to the population increase and ongoing industrialization and urbanization. In this study, a water quality management paradigm based on the seasonal variation is proposed. For better exploring the seasonal change of water quality, wavelet analysis was used to analyze the division of dry and wet seasons in the PRD during 1952–2009. Then water quality seasonal variation in 2008 and relevant impact factors were analyzed by multivariate statistic methods as a case to make some management measures. The results show that there are some differences of dry and wet seasons division among different years. Wet season mainly appear from April to September, which occupy the largest proportion among the 58 years (about 70%) and then followed by the wet season from May to October (about 13.8% of the total years). As to the water quality of 2008, significant differences exist between dry and wet seasons for 17 water quality parameters except TP, , Fe2+, and Zn2+. Levels of parameters pH, EC, CODMn, BOD5, , , and Cl? in dry season are much higher than those in wet season. In dry season the variations of river water quality are mainly influenced by domestic sewage, industrial effluents, and salt water intrusion. While in wet season, except the aforementioned pollution sources, drainages from cultivated land and livestock farm are also the main factors influencing water pollution. Thus, water quality management measures are proposed in dry and wet seasons, respectively. The results obtained from this study would further facilitate water quality protection and water resources management in the PRD.  相似文献   

14.
This paper presents the results of the statistical analysis of a set of physico-chemical and biological water quality parameters, monthly collected from 2000 to 2007 in the Genoa Harbour area (Ligurian Sea). We applied multivariate methods, such as principal component analysis (PCA) and dynamic factor analysis (DFA) for investigating the spatial and temporal variability and for providing important background information on pollution problems in the region. PCA evidenced the role of the sewage and river discharges and of the exchanges with the open sea in determining the harbour water quality. DFA was used to estimate underlying common trends in the time series. The DFA results partly show a general improvement of water quality over the 8-years period. However, in other areas, we found inter-annual variations but no significant multi-annual trend. Furthermore, we included meteorological variables in our statistical analyses because of their potential influence on the water quality parameters. These natural forcings explain part of the variability in water quality parameters that are superimposed on the dominating anthropogenic pollution factors.  相似文献   

15.
李艳红  葛刚  胡春华 《湖泊科学》2022,34(2):528-537
为深入理解鄱阳湖水体溶解性无机碳(DIC)、碳同位素时空分布特征及其影响因素,继而了解鄱阳湖碳通量及其主要碳源贡献率,于2019-2020年典型水文季节对鄱阳湖湖区及"五河"入湖口进行样品采集分析,采用统计学方法初步分析鄱阳湖及入湖口水体中DIC及其同位素(δ13 CDIC)分布特征.结果 表明:(1)DIC浓度丰水期...  相似文献   

16.
In this study, a full survey of pollutant sources and water quality was conducted, followed by the application of a water quality model (Water Quality Analysis Simulation Program, WASP) to establish strategies of water quality control in Carp Lake, Taiwan. Results of the field investigation show that both point and non‐point source (NPS) pollutants were responsible for the poor water quality. The contributions of biochemical oxygen demand (BOD) from point source and NPS pollution were 45.9 and 55.1%, respectively. About 80% of total phosphorus (TP) were contributed by NPS. Additionally, point source and NPS pollution discharged 55.5 and 44.5% of NH3–N load, respectively. The Carlson's Trophic State Index ranged from 61.9 to 69.2 showing serious eutrophic problems in Carp Lake. The calculated BOD, NH3–N, and TP carrying capacity were approximately 2.8, 0.42, and 0.15 kg per day, respectively. However, the current pollutant loadings are approximately 3.0–5.5 times the calculated carrying capacity. With the help of the calibrated WASP model, remedial strategies for the lake water from short‐term to long‐term were developed. The completion of the small local sewer system to remove 80% of the point source pollution can serve as a short‐term goal while 40–60% of NPS removal by natural treatment systems may serve as a mid‐term goal. Furthermore, 80% of both source point and NPS pollution removal can be considered as a long‐term strategy. Results of heavy metal analysis show that the enriched sediment would be safe for agricultural applications.  相似文献   

17.
This study examined the phosphorus retention and release characteristics of sediments in the eutrophic Mai Po Marshes in Hong Kong. Results of chemical fractionation show that the sum of inorganic P pools exceeded 50% of the total sediment P content, with the redox-sensitive iron-bound P (Fe(OOH) approximately P) being the dominant P fraction. Given the considerable average Fe(OOH) approximately P concentration of 912 microg g(-1), Mai Po sediments demonstrated a great potential to release bioavailable P under low sediment redox potentials. This was further supported by the high mean anaerobic P flux of 31.8 mg m(-2)d(-1) recorded in Mai Po sediment cores, indicating the role of bottom sediments as a net P source. Although sediments in Mai Po had appreciable Langmuir adsorption maxima (1642-3582 mg kg(-1)), the high zero equilibrium P concentrations (0.02-0.51 mg L(-1)) obtained suggest that sediment sorption processes would contribute to sustaining the eutrophic conditions in overlying water column even with a further reduction in external P load. Concerted efforts should be made to reduce internal loading of P, especially under reducing conditions, to complement the implementation of zero discharge policy for Deep Bay for effective eutrophication abatement and long-term water quality improvement in the Mai Po Marshes.  相似文献   

18.
The proximity of the Great Barrier Reef (GBR) Marine Park to areas of intensive agriculture and increasing urbanisation places the park under potential threat of contamination by land-based pollutants. Passive samplers were deployed at inshore reef and river mouth sites in the Wet Tropics region of the GBR during a dry and a wet season to measure levels of land-based organic pollutants in this environment. Two types of passive sampling devices were deployed: (i) a polar sampler, which can be used to monitor polar herbicides and (ii) semipermeable membrane devices (SPMDs) which sequester more hydrophobic compounds (e.g. PAHs, chlorpyrifos). Herbicides (diuron, simazine, atrazine, hexazinone and/or flumeturon) were detected at low concentrations (ng L−1) at all sites sampled and in both seasons. Chlorpyrifos was not detected while PAHs were present in SPMDs at levels below limits of detection. The results show that the GBR environment does contain low levels of organic pollutants and that passive sampling provides a sensitive monitoring tool for measuring waterborne organic pollutants.  相似文献   

19.
20.
Nitrogen (N) fertilization may profoundly affect soil microbial communities. In this study, a field fertilization experiment was conducted in temperate grassland in Inner Mongolia, China to examine the effect of N fertilization on soil microbial properties and the main factors related to the characteristics of soil microbial community. Soil microbial biomass carbon (MBC) and microbial functional diversity along an N gradient were measured over three months (June to August). The result showed that N fertilization significantly decreased MBC under high N treatment (N200, 200 kg N ha?1 y?1) compared with the control (N0, 0 kg N ha?1 y?1) in the three months. Microbial functional diversity in July and August were significantly increased by low N treatment (N50, 50 kg N ha?1 y?1). Among the three fertilization treatments, microbial functional diversity under N200 in the three months was significantly lower than that of N50. The decrease of MBC and functional diversity under N200 were mainly due to the significant decline of plant belowground biomass under high N treatment. The increase of functional diversity under N50 treatment was due to the higher plant aboveground biomass as a result of the higher soil moisture availability. This finding highlighted that the higher N fertilization (N200) was not suitable for the growth and improvement of functional diversity of the soil microbial community, and that site and plant community play an important role in regulating the characteristics of soil microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号