首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The variations of the orbital periods of two nearly neglected W UMa-type eclipsing binaries, EK Comae Berenices and UX Eridani, are presented through a detailed analysis of the OC diagrams. It is found that the orbital period of EK Com is decreasing and the period of UX Eridani is increasing, and several sudden jumps have occurred in the orbital periods of both binaries. We analyze the mechanism(s), which might underlie the changes of the orbital periods of both systems, and obtain some new results. The long-term decrease of the orbital period of EK Comae Berenices might be caused by the decrease of the orbital angular momentum due to a magnetic stellar wind (MSW) or by mass transfer from the more massive to the less massive component. The secular increase in the orbital period of UX Eridani might be caused by mass transfer from the less massive to the more massive star. The possible mechanisms, which underlie the sudden changes in the orbital periods of the close binary systems are as the followings: (1) the variations of the structure due to the variation of the magnetic field; (2) the rapid mass exchange between the close binaries and their circumstellar matter. Finally, the evolutionary status of the systems EK Comae Berenices and UX Eridani is discussed.  相似文献   

2.
An asynchronous magnetic white dwarf affects the rate of orbital evolution in AM Herculis binaries. An over-synchronous star leads to a positive orbital magnetic torque which reduces the rate of shrinkage of the secondary star's Roche lobe, and hence reduces the mass transfer rate. An opposing effect occurs as a result of the orbital angular momentum loss via secondary mass transfer in the absence of an accretion disc. The modification of the magnetic braking-driven synchronous mass transfer rate is calculated for a range of degrees of asynchronism, and its effect is compared at different orbital periods.  相似文献   

3.
the hypothesis that lineaments on Europa are fractures produced by tidal distortion and planetary volume change is examined by comparing the orientations of dark bands, triple bands, and cuspate ridges to fracture patterns predicted for tidal distortion due to orbital recession and orbital eccentricity. If short, reticulate dark band nnear the anti-Jove point are tension cracks which formed in response to tidal distortion, they could only have been produced by orbital eccentricity. Long, arcuate dark band and triple bands peripheral to the anti-Jove point orientations which suggest that they are strike-slip faults which formed in response to orbital recession. If cuspate ridges are compressional features, their orientations and distribution suggest that they formed in response to combined orbital recession and a decrease in planetary volume. Stresses due to orbital eccentricit could have produced tension cracks near the anti-Jove point only if tensile failure occurred either prior to the accumulation of orbital recession stresses or after they had relaxed. Surface fracturing, if a consequence of tidal deformation, places important constraints on the orbital evolution of Europa.  相似文献   

4.
The orbital positioning options and orbital structure control methods are considered for the Arktika-M highly elliptical hydrometeorological space system, which is designed for continuous 24-hour imaging of the Earth’s Arctic region. The purpose of the control is to ensure on-going performance during the entire operational life of the space system given a major spatial and temporal deformation of its orbital structure due to the nonuniform evolution of the orbital parameters. The highly elliptical Molniya orbits are considered. The proposed control procedure is based on the minimization of the spatial and temporal deformation of the orbital structure by means of the differential choice of the initial orbital parameters during the deployment and follow-up of the space system.  相似文献   

5.
The chaotic orbital dynamics of the planet in the wide visual binary star system 16 Cyg is considered. The only planet in this system has a significant orbital eccentricity, e = 0.69. Previously, Holman et al. suggested the possibility of chaos in the orbital dynamics of the planet due to the proximity of 16 Cyg to the separatrix of the Lidov–Kozai resonance. We have calculated the Lyapunov characteristic exponents on the set of possible orbital parameters for the planet. In all cases, the dynamics of 16 Cyg is regular with a Lyapunov time of more than 30 000 yr. The dynamics is considered in detail for several possible models of the planetary orbit; the dependences of Lyapunov exponents on the time of their calculation and the time dependences of osculating orbital elements have been constructed. Phase space sections for the system dynamics near the Lidov–Kozai resonance have been constructed for all models. A chaotic behavior in the orbital motion of the planet in 16 Cyg is shown to be unlikely, because 16 Cyg in phase space is far from the separatrix of the Lidov–Kozai resonance at admissible orbital parameters, with the chaotic layer near the separatrix being very narrow.  相似文献   

6.
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit–attitude coupling of the spacecraft. This gravitational orbit–attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.  相似文献   

7.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   

8.
We use full available array of radial velocity data, including recently published HARPS and Keck observatory sets, to characterize the orbital configuration of the planetary system orbiting GJ876. First, we propose and describe in detail a fast method to fit perturbed orbital configuration, based on the integration of the sensitivity equations inferred by the equations of the original N-body problem. Further, we find that it is unsatisfactory to treat the available radial velocity data for GJ876 in the traditional white noise model, because the actual noise appears autocorrelated (and demonstrates non-white frequency spectrum). The time scale of this correlation is about a few days, and the contribution of the correlated noise is about 2 m/s (i.e., similar to the level of internal errors in the Keck data). We propose a variation of the maximum-likelihood algorithm to estimate the orbital configuration of the system, taking into account the red noise effects. We show, in particular, that the non-zero orbital eccentricity of the innermost planet d, obtained in previous studies, is likely a result of misinterpreted red noise in the data. In addition to offsets in some orbital parameters, the red noise also makes the fit uncertainties systematically underestimated (while they are treated in the traditional white noise model). Also, we show that the orbital eccentricity of the outermost planet is actually ill-determined, although bounded by ~0.2. Finally, we investigate possible orbital non-coplanarity of the system, and limit the mutual inclination between the planets b and c orbits by 5°?C15°, depending on the angular position of the mutual orbital nodes.  相似文献   

9.
The sodium D-lines are observed in emission in a disklike distribution surrounding Io and extending outward in the orbital plane of the Galilean satellites to at least 23 RJ from Jupiter. A scale length for the sodium emission cloud in the orbital plane and the thickness of the sodium disk perpendicular to the orbital plane are determined. Weak D-line emission is also detected over the poles of Jupiter. Estimates of the apparent emission rates are derived from microdensitometer scans of the spectrograms as a function of position in the satellite orbital plane and perpendicular to the orbital plane. No other emission lines were detected down to a limit of ~50 R over the spectral range from 3500 Å to 9000 Å.  相似文献   

10.
王龙  周洪楠 《天文学报》2003,44(2):147-155
选取前文中所列出的29个累积光谱型为F型的球状星团中的3个作为样本,深入研究了初始观测资料的不确定性和选用不同的银河系引力势模型,对样本星团轨道参数的影响。首先采用Monte Carlo方法产生3个样本球状星团的模拟初始观测数据,而后,以这些模拟数据为初始条件,在3种不同的银河系引力势模型下进行轨道计算,得到此3个样本的模拟轨道参数。模拟计算的结果表明:根据模拟初始数据生成的样本轨道参数分布形态大致可分为高斯分布、准高斯分布和非高斯分布等3类;初始观测数据的不确定性对样本轨道参数分布的影响,与样本星团的选择和轨道参数的类型有关;选用不同的银河系引力势模型,对3个样本星团的各个轨道参数的分布和形态结构也会产生不同程度的影响。该工作的结果,可供深入研究球状星团的整体运动和动力学性质等问题参考。  相似文献   

11.
We present a simple, novel method for determining the orbital parameters of binary pulsars. This method works with any sort of orbital sampling, no matter how sparse, provided that information on the period derivatives is available with each measurement of the rotational period of the pulsar, and it is applicable to binary systems with nearly circular orbits. We use the technique to estimate precisely the hitherto unknown orbital parameters of two binary millisecond pulsars in the globular cluster 47 Tucanae, 47 Tuc S and T. The method can also be used more generally to make first-order estimates of the orbital parameters of binary systems using a minimal number of data.  相似文献   

12.
At the present state the rotational axes of Uranus and Pluto are nearly perpendicular to their orbital planes and each satellite moves in the vicinity of the equatorial plane of its mother planet. We assume that in the past a planet's equatorial plane was nearly coincident with its orbital plane and then the inclination of the equatorial plane with respect to the orbital plane began to increase secularly. Here we discuss whether a satellite that moves in its mother's equatorial plane continues to move in the equatorial plane or not. When the direct solar perturbation is neglected, the satellite continues to stay in the equatorial plane under the condition that the secular rate of change of the obliquity is slower than the precessional speed of the satellite orbital plane with respect to the equator.  相似文献   

13.
We present results from a pulse timing analysis of the accretion-powered millisecond X-ray pulsar SAX J1808.4-3658 using X-ray data obtained during four outbursts of this source. Extensive observations were made with the proportional counter array of the Rossi X-ray Timing Explorer (RXTE) during the four outbursts that occurred in 1998, 2000, 2002 and 2005. Instead of measuring the arrival times of individual pulses or the pulse arrival time delay measurement that is commonly used to determine the orbital parameters of binary pulsars, we have determined the orbital ephemeris during each observation by optimizing the pulse detection against a range of trial ephemeris values. The source exhibits a significant pulse shape variability during the outbursts. The technique used by us does not depend on the pulse profile evolution, and is therefore, different from the standard pulse timing analysis. Using 27 measurements of orbital ephemerides during the four outbursts spread over more than 7 years and more than 31,000 binary orbits, we have derived an accurate value of the orbital period of 7249.156862(5) s (MJD = 50915) and detected an orbital period derivative of (3.14 ± 0.21) × 10−12 s s−1. We have included a table of the 27 mid-eclipse time measurements of this source that will be valuable for further studies of the orbital evolution of the source, especially with ASTROSAT. We point out that the measured rate of orbital period evolution is considerably faster than the most commonly discussed mechanisms of orbital period evolution like mass transfer, mass loss from the companion star and gravitational wave radiation. The present time scale of orbital period change, 73 Myr is therefore likely to be a transient high value of period evolution and similar measurements during subsequent outbursts of SAX J1808.4-3658 will help us to resolve this.  相似文献   

14.
The control of the orbital structure of the satellite constellation (SC) of continuous service with spacecraft in highly elliptical orbits of the Molniya type is considered. For ensuring the SC dynamic stability, it is proposed to use passive, active, and combined approaches to the SC orbital structure control. A statement of the problem to ensur e dynamic stability is given and results of its solution for a particular variant of the orbital construction of the Arktika-M space system are presented for the passive control approach. The proposed orbital structure control is based on minimizing the evolution-induced space-time deformation of the orbital structure by means of differentiated selection of initial parameters of orbits at the stages of the SC deployment and replenishment and by means of control of the spacecraft’s ground track at the SC operation stage. Using this control method is especially important with long active life spans of spacecraft and limitations on propellant margins for orbit correction.  相似文献   

15.
为了适应星际探测的需求,本文建立了在新的精度要求下土星卫星运动对应的力学模型,具体讨论了土卫八的运动,并针对主要摄动源土卫六的引力作用,建立了轨道变化的分析解,以此表明建立了土卫运动理论该采取的途径和精密定轨宜采用以轨道根数作为状态量的数值定轨方法。  相似文献   

16.
We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.  相似文献   

17.
There are two ways of expressing the precession of orbital plane of a binary pulsar system, given by Barker & O'Connell, Apostolatos et al. and Kidder, respectively. We point out that these two ways actually come from the same Lagrangian under different degrees of freedom. Damour & Schafer and Wex & Kopeikin applied Barker & O'Connell's orbital precession velocity in pulsar timing measurement. This paper applies Apostolatos et al.'s and Kidder's orbital precession velocity. We show that Damour & Schafer's treatment corresponds to negligible Spin-Orbit induced precession of periastron, while Wex & Kopeikin and this paper both found significant (but not equivalent) effects. The observational data of two typical binary pulsars, PSR J2051-0827 and PSR J1713+0747, apparently support a significant Spin-Orbit coupling effect. Specific binary pulsars with orbital plane nearly edge on could discriminate between Wex & Kopeikin and this paper: if the orbital period derivative of the double-pulsar system PSRs J0737-3039 A and B, with orbital inclination angle i = 87.7129 deg, is much larger than that of the gravitational radiation induced one, then the expression in this paper is supported, otherwise Wex & Kopeikin's is supported.  相似文献   

18.
A more extended statistical material based on the “Second Catalogue d'Ephémérides de Vitesses radiales relatives” by J. Dommanget and O.Nys (1982) has made possible a new study on the distribution of the orbital poles of visual orbital pairs. It is confirmed that orbital planes do not show any tendancy to be parallel to the galactic plane: at the contrary they show a preference to be perpendicular to it. The most important result is: “Space seems to be divided into elements of the order of 10 to 30 parsecs where visual systems show similar orbital plane orientation”. This confirms a result found in a preceding research (1967) concerning some ten systems surrounding the solar system.  相似文献   

19.
The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle’s orbit constitute a system of equations that determines the evolution of the particle’s orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar System is also investigated. We consider icy particles with radii from 1 to 10 μm. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 105 to 2 × 106 years, approximately.  相似文献   

20.
共轨运动天体与摄动天体的半长径相同,处于1:1平运动共振中.太阳系内多个行星的特洛伊天体即为处于蝌蚪形轨道的共轨运动天体,其中一些高轨道倾角特洛伊天体的轨道运动与来源仍未被完全理解.利用一个新发展的适用于处理1:1平运动共振的摄动函数展开方式,对三维空间中的共轨运动进行考察,计算不同初始轨道根数情况下共轨轨道的共振中心、共振宽度,分析轨道类型与初始轨道根数的关系.并将分析方法所得结果与数值方法的结果相互比较验证,得到了广阔初始轨道根数空间内共轨运动的全局图景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号