首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.  相似文献   

2.
With increased geoid resolution provided by the gravity and steady-state ocean circulation explorer (GOCE) mission, the ocean’s mean dynamic topography (MDT) can be now estimated with an accuracy not available prior to using geodetic methods. However, an altimetric-derived MDT still needs filtering in order to remove short wavelength noise unless integrated methods are used in which the three quantities are determined simultaneously using appropriate covariance functions. We studied nonlinear anisotropic diffusive filtering applied to the ocean´s MDT and a new approach based on edge-enhancing diffusion (EED) filtering is presented. EED filters enable controlling the direction and magnitude of the filtering, with subsequent enhancement of computations of the associated surface geostrophic currents (SGCs). Applying this method to a smooth MDT and to a noisy MDT, both for a region in the Northwestern Pacific Ocean, we found that EED filtering provides similar estimation of the current velocities in both cases, whereas a non-linear isotropic filter (the Perona and Malik filter) returns results influenced by local residual noise when a difficult case is tested. We found that EED filtering preserves all the advantages that the Perona and Malik filter have over the standard linear isotropic Gaussian filters. Moreover, EED is shown to be more stable and less influenced by outliers. This suggests that the EED filtering strategy would be preferred given its capabilities in controlling/preserving the SGCs.  相似文献   

3.
This study is concerned with the influence of the glacial-isostatic adjustment caused by the last Pleistocene deglaciation on the present-day sea level. The viscoelastic deformation caused by the time-variable ice and ocean loads is simulated by computing the resulting perturbations for a spherical, self-gravitating, incompressible, Maxwell-viscoelastic earth model. The associated variation of the earth rotation is described in terms of the Liouville equation, which is solved by means of the MacCullagh formulae. This allows the determination of the vertical displacement and geoid height and, thus, the solution of the sea-level equation. We test several viscosity and ice models and evaluate them by comparison of the computed response with the Holocene relative sea-level record. Using the optimum combination of viscosity and ice models, we then estimate the influence of the last Pleistocene deglaciation on the tide-gauge measurements. A comparison between the observational and residual linear trends for the tide-gauge measurements shows a significant reduction of the variance and geographical variability for the latter, in particular for the formerly ice-covered regions of North America and Scandinavia. The favoured value determined for the global mean sea-level rise is (1.46±0.2) mm a−1.  相似文献   

4.
Semianalytical Computation of Path Lines for Finite-Difference Models   总被引:13,自引:0,他引:13  
  相似文献   

5.
A mean climatology is studied to examine atmospheric circulation characteristics to assess the wintertime (December, January, February and March - DJFM) synoptic weather system affecting northern India. The main objective is to study the mean circulation and mean energetics distribution pertaining to the winter season, which are embedded with an eastward moving synoptic weather system in westerlies, called Western Disturbances (WDs). Forty years (1958–1997) of uninitialized daily re-analysis data of the National Center for Environmental Prediction - National Center for Atmospheric Research (NCEP- NCAR, henceafter NCEP), U.S. has been considered for this study. Winter circulations are considered over the domain 15°S–45°N and 30°E–120°E. This domain is considered particularly to illustrate the impact of wintertime synoptic weather system Western Disturbances (WDs), which travel towards the east over the western Himalayas during winter and yield an enormous amount of precipitation in the form of snow. Large-scale balances of kinetic energy, vorticity, angular momentum, heat and moisture budget terms are analyzed. The main findings of the study show that strong rising motion in the extratropical region brings a significant amount of precipitation over the region of study. Also, horizontal flux of kinetic energy converges in the tropical region and diverges over the extratropical region. It is seen that both the zonal and meridional component of kinetic energy contributes to the production of kinetic energy in the upper troposphere. Vorticity budget shows that wintertime circulation over the western Himalayas is characterized by a negative generation of vorticity. The relative and planetary vorticity advection contributes to the horizontal transport of vorticity. The moisture flux transported into the region shows that in the middle tropospheric levels moisture undergoes phase transformation due to turbulent exchange and hence releases latent heat.  相似文献   

6.
基于动力子结构方法的场地地震反应分析方法   总被引:1,自引:1,他引:1  
本文验证了将约束子结构法引入到复杂场地地震反应分析的可行性,并在此基础上提出了两种进一步提高计算效率的简化措施。结合土层有限元模型的自身特点,提出了标准子结构的概念,通过设置标准子结构,可减少相同子结构的重复计算。基于约束子结构本身的性质,假定土层计算区域为局部非线性,可简化等效线性化分析过程,通过数值试验给出了局部非线性区域的取值范围。算例表明,上述简化措施在提高大规模复杂场地地震反应分析计算效率方面具有显著的优势。  相似文献   

7.
Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius–Clapeyron equation) and of precipitation at the rate 2–3 %/K (in line with energetic constraints). Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~?0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988?2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius?Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.  相似文献   

8.
In Forte and Claire Perry (2000) models of mantle viscosity (by using the data on tectonic plate velocities, of global free-air gravity anomalies, of surface topography corrected for crustal isostasy, and the excess of dynamic ellipticity of the core-mantle boundary in accordance with Herring et al., 1986 and Mathews et al., 1999) have been constructed. In the following investigation we reconsider the results which are obtained from the presently available data on core-mantle boundary flattening (abbreviated by CMBF). In contrast with the aforementioned work, we use below the value of CMBF (Molodensky and Groten, 1998) which is based on a new approach to the theory of diurnal Earth tides and nutation which takes into account the second-order terms of expansions of a small parameter (for a detailed discussion of this subject see (Molodensky and Groten, 1998)). Below we find the area of admissible values of mantle viscosity which does not contradict the following data sets: (a) the numerical value on CMBF; (b) the value of the whole Earth's dynamical flattening, and (c) the data on the secular deceleration of the Earth's rotation. Our estimations show, that the maximal viscosity at depth 2000 km may be of the order of 1027 Poise. This value is consistent with the distribution obtained by Trubitsin (2000) who adopted the viscosity dependence on temperature and pressure by an exponential function with olivine parameters under the assumption that the activation energy varies only weakly with pressure, and the activation volume varies in inverse proportion to temperature. Under these assumptions, his solution of convection equations gave the depth dependence of temperature and thereby the viscosity distribution.  相似文献   

9.
Assimilation of SLA and SST data into an OGCM for the Indian Ocean   总被引:6,自引:0,他引:6  
 Remotely sensed observations of sea-level anomaly and sea-surface temperature have been assimilated into an implementation of the Miami Isopycnic Coordinate Ocean Model (MICOM) for the Indian Ocean using the Ensemble Kalman Filter (EnKF). The system has been applied in a hindcast validation experiment to examine the properties of the assimilation scheme when used with a full ocean general circulation model and real observations. This work is considered as a first step towards an operational ocean monitoring and forecasting system for the Indian Ocean. The assimilation of real data has demonstrated that the sequential EnKF can efficiently control the model evolution in time. The use of data assimilation requires a significant amount of additional processing and computational resources. However, we have tried to justify the cost of using a sophisticated assimilation scheme by demonstrating strong regional and temporal dependencies of the covariance statistics, which include highly anisotropic and flow-dependent correlation functions. In particular, we observed a marked difference between error statistics in the equatorial region and at off-equatorial latitudes. We have also demonstrated how the assimilation of SLA and SST improves the model fields with respect to real observations. Independent in situ temperature profiles have been used to examine the impact of assimilating the remotely sensed observations. These intercomparisons have shown that the model temperature and salinity fields better resemble in situ observations in the assimilation experiment than in a model free-run case. On the other hand, it is also expected that assimilation of in situ profiles is needed to properly control the deep ocean circulation. Received: 8 January 2002 / Accepted: 8 April 2002  相似文献   

10.
The aim of this paper is twofold : To present an efficient numerical technique for the simulation of the ocean general circulation (OGC) and to apply it to the simulation of the Indian Ocean dynamics with high spatial resolution. To solve model equations we use the splitting method by physical processes and space coordinates. We select the main parts of the model operator and then perform their numerical treatment independently of one another. We describe the general methodology and some special aspects of this approach. Numerical treatment of the monsoon circulation is performed on the basis of the sigma-coordinate primitive equation model, which was developed at the Institute of Numerical Mathematics (Moscow, Russia). We present and briefly analyze the results of the numerical experiment with high spatial resolution 1/8° along latitude, 1/12° along longitude, and with 21 vertical sigma levels.The work was supported by the Russian Foundation for the Basic Research (03-05-64354, 02-05-64909) and by the Russian Academy of Sciences (10002-251/OMN-03/026-020/240603-807)  相似文献   

11.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

12.
We studied the structure of the Indian Ocean(IO)Meridional Overturning Circulation(MOC)by applying a nonlinear inertia theory and analyzed the coupled relationship between zonal wind stress and MOC anomalies.Our results show that the inertia theory can represent the main characteristics of the IO MOC:the subtropical cell(STC)and cross-equator cell(CEC).The stream function in equatorial and northern IO changes a sign from winter to summer.The anomalies of the zonal wind stress and stream function can be decomposed into summer monsoon mode,winter monsoon mode,and abnormal mode by using the singular vector decomposition(SVD)analysis.The first two modes correlate with the transport through 20°S and equator simultaneously whereas the relationship obscures between the third mode and transports across 20°S and equator,showing the complex air-sea interaction process.The transport experiences multi-time scale variability according to the continuous power spectrum analysis,with major periods in inter-annual and decadal scale.  相似文献   

13.
Climatic Change and the Dynamics of River Runoff into the Arctic Ocean   总被引:2,自引:0,他引:2  
Time series of the river runoff into the Arctic Ocean over the period 1921–1999 are obtained through generalization of the available detailed hydrologic data on the drainage basin of the Arctic Ocean and estimates of the river runoff from areas in which no hydrometric observations have been made. Trends in the annual and seasonal river runoff from different parts of the basin are analyzed both for the entire period under study and for the last decades, which in the northern hemisphere are characterized by the most intense rise in air temperature. Potential future changes in the runoff of the main rivers of the basin and in the total river runoff into the ocean are discussed.  相似文献   

14.
Convective cloud variability on many times scales can be viewed as having three major components: a suppressed phase of shallow and congestus clouds, a disturbed phase of deep convective clouds, and a mature phase of transition to stratiform upper-level clouds. Cumulus parameterization development has focused primarily on the second phase until recently. Consequently, many parameterizations are not sufficiently sensitive to variations in tropospheric humidity. This shortcoming may affect global climate model simulations of climate sensitivity to external forcings, the continental diurnal cycle of clouds and precipitation, and intraseasonal precipitation variability. The lack of sensitivity can be traced in part to underestimated entrainment of environmental air into rising convective clouds and insufficient evaporation of rain into the environment. As a result, the parameterizations produce deep convection too easily while stabilizing the environment too quickly to allow the effects of convective mesoscale organization to occur. Recent versions of some models have increased their sensitivity to tropospheric humidity and improved some aspects of their variability, but a parameterization of mesoscale organization is still absent from most models. Evidence about the effect of these uncertainties on climate change projections suggests that climate modelers should make improved simulation of high and convective clouds as high a priority as better representations of low clouds.  相似文献   

15.
Statistical analysis of long-term hydrological observations has shown that the interannual variations in the total river runoff into the Arctic Ocean can be considered as a stationary process. Similar are the variations in the annual runoff of the Ob, Lena, and rivers of the northwestern Asia. However, some components of the total runoff into the Arctic Ocean feature distinct and fairly complicated disturbances in the homogeneity of runoff variations. For example, variations in the annual runoff of the Yenisei River have a distinct nonmonotonic trend: the runoff systematically decreased till the late 1950s and increased since the late 1960s. The rivers of the European part of the Arctic Ocean drainage basin featured a decrease in the amplitude of variations in runoff during the past decades. Rivers of the northwestern America and northeastern Asia featured a regular increase in the amplitude of runoff variations and their autocorrelation since the late 1960s.  相似文献   

16.
17.
Abstract

The purpose of this paper is to present the methodology set up to derive catchment soil moisture from Earth Observation (EO) data using microwave spaceborne Synthetic Aperture Radar (SAR) images from ERS satellites and to study the improvements brought about by an assimilation of this information into hydrological models. The methodology used to derive EO data is based on the appropriate selection of land cover types for which the radar signal is mainly sensitive to soil moisture variations. Then a hydrological model is chosen, which can take advantage of the new information brought by remote sensing. The assimilation of soil moisture deduced from EO data into hydrological models is based principally on model parameter updating. The main assumption of this method is that the better the model simulates the current hydrological system, the better the following forecast will be. Another methodology used is a sequential one based on Kalman filtering. These methods have been put forward for use in the European AIMWATER project on the Seine catchment upstream of Paris (France) where dams are operated to alleviate floods in the Paris area.  相似文献   

18.
19.
20.
The effect of water consumption and reservoirs on the regime and water resources of Russian rivers emptying into the Arctic Ocean is discussed. The impact of reservoirs on the annual and seasonal runoff of regulated rivers is estimated. The transformation of this impact along the rivers down to their outlet sections is analyzed. Possible variants of the development of water management measures in Arctic river basins in the first quarter of the 21st century are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号