首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
卫星重力学与重力卫星研究进展   总被引:1,自引:0,他引:1  
综述了地球重力场研究对揭示其运动和时变与地震之间的关系的重要性;介绍了当今国际固体地球科学与防灾研究的一个新热点——卫星重力学与重力卫星研究的进展。随着重力卫星计划的实施,地球重力场的研究也将因此产生质的变化。文章对CHAMP、GRACE和GOCE重力卫星作了介绍。  相似文献   

2.
A Comparison of Global and Regional GRACE Models for Land Hydrology   总被引:1,自引:0,他引:1  
When using GRACE as a tool for hydrology, many different gravity field model products are now available to the end user. The traditional spherical harmonics solutions produced from GRACE are typically obtained through an optimization of the gravity field data at the global scale, and are generated by a number of processing centers around the world. Alternatives to this global approach include so-called regional techniques, for which many variants exist, but whose common trait is that they only use the gravity data collected over the area of interest to generate the solution. To determine whether these regional solutions hold any advantage over the global techniques in terms of overall accuracy, a range of comparisons were made using some of the more widely used regional and global methods currently available. The regional techniques tested made use of either spherical radial basis functions or single layer densities (i.e., mascons), with the global solutions having been obtained from the various major processing centers. The solutions were evaluated using a range of computed statistics over a selection of major river basins, which were globally distributed and ranged in size from 1 to 6 million km2. For one of the basins tested, the Zambezi, additional validation tests were conducted through comparisons against a custom designed regional hydrology model of the region. We could not prove that current regional models perform better than global ones. Monthly mean water storage variations agree at the level of 0.02 m equivalent water height. The differences in terms of monthly mean water storage variations between regional and global solutions are comparable with the differences among only global or regional solutions. Typically they reach values of 0.02 m equivalent water heights, which seems to be the level of accuracy of current GRACE solutions for river basins above 1 million km2. The amplitudes of the seasonal mass variations agree at the sub-centimetre level. Evident from all of the comparisons shown is the importance that the choice of regularization, or spatial filtering, can have on the solution quality. This was found to be true for global as well as regional techniques.  相似文献   

3.
利用GRACE卫星数据研究汶川地震前后重力场的变化   总被引:2,自引:0,他引:2  
介绍了利用GRACE卫星数据计算和分析重力场变化的方法.以EIGEN-GRACE02S重力场模型为背景,对高斯平滑处理前后中国大陆月重力场的变化作了比较,认为取平均半径为666 km作高斯平滑,能够得到合理的重力变化结果.以3个月时间尺度计算了2008年汶川地震前后中国大陆的重力场变化,将结果与2006年和2007年相同时间尺度的变化结果进行比较,发现三者相符合,并且同震重力的负变化可用地壳膨胀模型理论来解释.  相似文献   

4.
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude (f GRACE) and time series of monthly TWS (f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.  相似文献   

5.
6.
On the afternoon of 28 October 2013, plume-like streaks were detected by geostationary and polar orbiting satellites over eastern Ontario, Canada. These streaks were characterized by enhanced reflectivity in the visible bands and warmer brightness temperatures at 3.9 µm. These streaks were part of a low-level liquid water cloud layer. Due to the similarity of the streaks to plume-like features in marine stratocumulus caused by smoke from the stacks of ships, so-called ship tracks, a local source of emitted aerosols was suspected and subsequently identified as the burning of logging residue. This event provides further support for the ability of locally enhanced aerosol loading to alter microphysical characteristics of clouds. Ship tracks, pollution plumes from industrial burning, and pyro-cumulus are known examples of this type of interaction. In addition, the plume-like streaks could be used indirectly to identify the location of the source of the emitted particles.  相似文献   

7.
An understanding of the formation of shear fractures is important in many rock engineering design problems. Laboratory experiments have been performed to determine the Mode II fracture toughness of Mizunami granite rock samples using a cylindrical `punch-through' testing device. In this paper we attempt to understand and interpret the experimental results by numerical simulation of the fundamental shear fracture initiation and coalescence processes, using a random array of displacement discontinuity crack elements. It is found that qualitative agreement between the experimental and numerical results can be established, provided that shear-like micro-scale failure processes can be accommodated by the failure initiation rules that are used in the numerical simulations. In particular, it is found that the use of an exclusively tension-driven failure initiation rule does not allow the formation of macro-shear structures. It is apparent, also, that further investigation is required to determine how consistent rules can be established to link micro-failure criteria to equivalent macro-strength and toughness properties for a macro-shear slip surface.  相似文献   

8.
利用经过去相关滤波处理的GRACE时变重力场模型获得了青藏高原东缘2003—2012年的卫星年重力变化图像,并针对该区域近年发生的三次特大地震,结合震前及震后月重力场变化图像,分析与强震有关的卫星重力场变化特征。从区域年重力变化图像可以看出,三次大震均发生在年重力变化较低的时段内,震前小幅值变化可能是地震发生的中短期前兆;从汶川地震和玉树地震发生前后的月重力场变化图像可以发现,发震前后断层附近的重力变化模式发生变化,这可能印证了震后位场变化恢复理论;从汶川地震前后的龙门山断层附近点上的周重力变化趋势可以明显发现,汶川地震发生(第20周)后近9周的时间,断层东西侧呈现了相反的重力变化特征,这可能是对震后壳幔物质调整过程的反映。  相似文献   

9.
Debol'skaya  E. I. 《Water Resources》2001,28(2):210-214
The results of field observations and numerical experiments performed in the past few decades on the dynamics of shallow-water ice-covered streams are analyzed. Particular attention is given to some features of the eddy structures. Mathematical models of ice-covered streams and their practical applications are reviewed.  相似文献   

10.
Firstly, the new single and combined error models applied to estimate the cumulative geoid height error are efficiently produced by the dominating error sources consisting of the gravity gradient of the satellite-equipped gradiometer and the orbital position of the space-borne GPS/GLONASS receiver using the power spectral principle. At degree 250, the cumulative geoid height error is 1.769 × 10?1 m based on the new combined error model, which preferably accords with a recovery accuracy of 1.760 ×10?1 m from the GOCE-only Earth gravity field model GO_CONS_GCF_2_TIM_R2 released in Germany. Therefore, the new combined error model of the cumulative geoid height is correct and reliable in this study. Secondly, the requirements analysis for the future GOCE Follow-On satellite system is carried out in respect of the preferred design of the matching measurement accuracy of key payloads comprising the gravity gradient and orbital position and the optimal selection of the orbital altitude of the satellite. We recommend the gravity gradient with an accuracy of 10?13?10?15 /s2, the orbital position with a precision of 1-0.1 cm and the orbital altitude of 200-250 km in the future GOCE Follow-On mission.  相似文献   

11.
赵倩  苏小宁 《地震》2016,36(3):152-160
从满足重力卫星编队的轨道根数条件出发, 通过全过程动力法仿真实验, 计算得出了满足串联编队(GRACE-type)、 钟摆编队(Pendulum-type)和车轮编队(Cartwheel-type)这三种卫星编队模式稳定在轨的轨道参数, 并验证了其稳定性。 同时, 深入分析了各种卫星编队模式对于重力卫星任务的适用性, 结果表明, 同时包含两个方向观测量的Pendulum-type编队和Cartwheel-type编队, 能够在一定程度上克服GRACE-type编队中存在的由单一星间观测量的强相关性导致的重力场各向异性敏感度问题, 是理论上更适合重力探测任务的卫星编队模式。  相似文献   

12.
Current knowledge of the Earth's gravity field and its geoid, as derived from various observing techniques and sources, is incomplete. Within a reasonable time, substantial improvement will come by exploiting new approaches based on spaceborne gravity observation. Among these, the European Space Agency (ESA) Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission concept has been conceived and designed taking into account multi-disciplinary research objectives in solid Earth physics, oceanography and geodesy. Based on the unique capability of a gravity gradiometer combined with satellite-to-satellite high-low tracking techniques, an accurate and detailed global model of the Earth's gravity field and its corresponding geoid will be recovered. The importance of this is demonstrated by a series of realistic simulation experiments. In particular, the quantitative impact of the new and accurate gravity field and geoid is examined in studies of tectonic composition and motion, Glaciological Isostatic Adjustment, ocean mesoscale variability, water mass transport, and unification of height systems. Improved knowledge in each of these fields will also ensure the accumulation of new understanding of past and present sea-level changes.  相似文献   

13.
Groundwater plays a major role in the hydrological processes driven by climate change and human activities, particularly in upper mountainous basins. The Jinsha River Basin (JRB) is the uppermost region of the Yangtze River and the largest hydropower production region in China. With the construction of artificial cascade reservoirs increasing in this region, the annual and seasonal flows are changing and affecting the water cycles. Here, we first infer the groundwater storage changes (GWSC), accounting for sediment transport in JRB, by combining the Gravity Recovery and Climate Experiment mission, hydrologic models and in situ data. The results indicate: (1) the average estimation of the GWSC trend, accounting for sediment transport in JRB, is 0.76 ± 0.10 cm/year during the period 2003 to 2015, and the contribution of sediment transport accounts for 15%; (2) precipitation (P), evapotranspiration (ET), soil moisture change, GWSC, and land water storage changes (LWSC) show clear seasonal cycles; the interannual trends of LWSC and GWSC increase, but P, runoff (R), surface water storage change and SMC decrease, and ET remains basically unchanged; (3) the main contributor to the increase in LWSC in JRB is GWSC, and the increased GWSC may be dominated by human activities, such as cascade damming and climate variations (such as snow and glacier melt due to increased temperatures). This study can provide valuable information regarding JRB in China for understanding GWSC patterns and exploring their implications for regional water management.  相似文献   

14.
15.
The non-tidal variation gained from continuous gravity observations in stations usually reflects the regional continuous gravity changes. In this paper we focus on studying the non-tidal variation of Baijiatuan station, Beijing where there are two different gravimeters (namely, L&R-804 and PET-031). Based on the original raw tidal records of two gravimeters from 2008 to 2011, we first remove various interference from raw data by the standard procedure software-Tsoft; then we model the solid earth tides, ocean tidal loading and pole tide through related parameters; after that we adopt a new segmented polynomial fitting method based on Tsoft to fit the complex drift of spring gravimeter; and finally we calculate the atmospheric loading effects by a linear regression model. After a series of processing we gain the non-tidal variation of the two gravimeters at Baijiatuan site, Beijing. Furthermore, to analyze the non-tidal variation preliminarily, we study the main component of related tidal data by power spectral density. Comparing the non-tidal variation of two different gravimeters, we find seasonal fluctuations in non-tidal results, which are in accordance with the water storage change. Therefore, we take into account the relevance of gravity changes and water storage based on the gravity data of GRACE and water data of the CMAP model from 2003 to 2011 at different sites in the Chinese mainland (Beijing, Chengdu, Shenyang and Shiquanhe) , and make a preliminary analysis on the relationship between gravity changes and water storage.  相似文献   

16.
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.  相似文献   

17.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

18.
电磁波增长、等离子体密度、粒子通量的扰动与地震的关系已经被前人研究了二十年了。尽管不断有人提出新的震例分析试图说明它们之间存在关联,但是只有通过对大量数据进行详尽的统计分析才能得到令人信服的结论,才有可能将卫星数据用于地震预报。本文前一部分回顾了这些年比较有代表性的关于空间卫星观测电磁波与地震关系的统计分析文献,后一部分回顾了地震上空等离子体密度、粒子通量扰动与地震关系的文献。  相似文献   

19.
20.
弹性半无限空间模型程序(Okada)经常被用于计算同震形变,但该程序不能考虑岩石分层和重力作用对变形的影响,也无法考虑震后粘弹性变形.本文利用汪容江考虑分层、重力作用的粘弹性模型程序(PSGRN/PSCMP),讨论走滑和倾向滑动断层的几种情况,并与Okada模型进行比较.结果表明重力影响不大,分层作用的影响要大于重力作用的影响;考虑重力和分层可给出更好的结果;粘滞系数的大小对震后形变曲线的形态和幅度都有很大的影响,涉及震后形变的问题考虑粘滞性是非常重要的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号