首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have indicated the existence of a considerably higher planktonic biomass in the deep waters of the Saguenay Fjord as compared to corresponding depths in the adjacent St Lawrence Estuary on the other side of a shallow sill. The hypothesis that has been put forward to explain this phenomenon is related to the advection of near surface estuarine waters, at times very rich in particulate matter, over the entrance sill into the deeper waters of the fjord. Mixing processes associated with the development of a density flow, the presence of a hydraulic jump or other mechanisms are assumed to be responsible for the common occurrence of lower density subsurface water within the basin as compared to that penetrating over the sill.The exchange processes between the estuary and the fjord are described and an estimate made of the estuarine water volume that penetrates into the lower layer of the fjord over a semidiurnal tide cycle. From these calculations, the replacement time for the outer basin was estimated to range between one and four days. The biological characteristics of this water were used to establish a budget for particulate matter exchange which showed, in early August, a typical net input of ? 188 t of particulate organic carbon into the deep waters of the fjord over one tide cycle.  相似文献   

2.
Copper concentrations have been measured in more than 200 samples collected from an Alaskan fjord and continental shelf and slope regions in the northwestern Gulf of Alaska. Concentrations were lowest (2·1 nmol kg−1) at depths of 400–1000 m in the continental slope waters of the Gulf of Alaska. Copper increased systematically with decreasing salinities shoreward to concentrations >30 nmol kg−1 in fjord surface waters during summer months of high freshwater runoff. Copper concentrations increased with depth at an inner fjord station where deep basin waters have restricted circulation, and these data together with surface (<5 cm) pore water copper concentrations (mean=122 nmol kg−1) about an order of magnitude higher than bottom water copper concentrations are indicative of a flux of copper across the sediment-seawater interface. This latter was estimated at 32±12 nmol cm−2 annually, and represented less than 20% of the annual input to fjord surface water (228–411 nmol cm−2) added during summer months. Mass balances in bottom waters indicate a vigorous recycling of copper with a residence time estimated at 21±11 days. Most copper that is remobilized in surface sediments is returned to bottom waters and little (3%) is removed by subsequent diagenetic reaction in the buried sediments. However, an estimate of copper accumulating in anoxic fjord sediments was comparable with copper added to fjord surface waters suggesting that input-removal reactions rather than internal cycling controls copper geochemistry in this estuary.  相似文献   

3.
An unstable rock-slope is detected in Åkerneset, located in Storfjorden, Western Norway. In the future this rock-slope will produce a slide and a subsequent tsunami. In accordance to this future event, experiments in a 1:500 scale model of the inner part of Storfjorden are performed, where the model geometry is made after the real fjord bathymetry, while the slide is an idealized slide of block-type. The slide motion is monitored and the generated waves are measured at a number of wave gauges in the model. At selected locations local details of the flow, velocities and inundation are measured by digital image techniques and acoustic probes. Features of the wave system and the inundation are elaborately discussed with a view to the future event as well as to the application of models.  相似文献   

4.
Fjords are semi-enclosed systems often with usually strong physical and chemical gradients. These gradients provide the opportunity to test the influence of various physical and chemical factors on biodiversity. However study area of this investigation, Trondheimsfjord, is a large water body where especially salinity gradient along the fjord is not well pronounced. The goal of this study was to establish within a temperate fjord a baseline identifying encrusting fauna on rocks and determine the factors driving changes along the length of the fjord and changing depths. There was no trend in species composition change and increase or decrease in number of species, diversity and number of individuals along the fjord. This was likely due to the relative homogeneity of both substrate (rocks) and environmental parameters. Nevertheless, the influence of fresh water inflow in the vicinity of the river mouth was apparent by the presence of characteristic brackish-water species at these locations. Multidimensional scaling analysis revealed three separate assemblages: intertidal, shallow and deep subtidal (below 50 m). Intertidal assemblages were species poor (one to 11 species) but relatively abundant (six to 2374 indiv./m2 of rocks). Number of individuals and biomass was highest in the shallow subtidal (2059–13,587 indiv./m2 of rocks). Overall the highest species number (45) was recorded at 50 m depth which is probably result of low competition pressure yet still relatively high nutrient concentration in comparison to shallower locations. Environmental parameters (i.e., tidal currents, wave action, salinity) change more drastically with depth than along the fjord and these changes are the major driving forces in shaping encrusting assemblages in Trondheimsfjord.  相似文献   

5.
The mixing agents and their role in the dynamics of a shallow fjord are elucidated through an Eulerian implementation of artificial tracers in a three-dimensional hydrodynamic model. The time scales of vertical mixing in this shallow estuary are short, and the artificial tracers are utilized in order to reveal information not detectable in the temperature or salinity fields. The fjord's response to external forcing is investigated through a series of model experiments in which we quantify vertical mixing, transport time scales of fresh water runoff and estuarine circulation in relation to external forcing.Using age tracers released at surface and bottom, we quantify the time scales of downward mixing of surface water and upward mixing of bottom water. Wind is shown to be the major agent for vertical mixing at nearly all depth levels in the fjord, whereas the tide or external sea level forcing is a minor agent and only occasionally more important just close to the bottom. The time scale of vertical mixing of surface water to the bottom or ventilation time scale of bottom water is estimated to be in the range 0.7 h to 9.0 days, with an average age of 2.7 days for the year 2004.The fjord receives fresh water from two streams entering the innermost part of the fjord, and the distribution and age of this water are studied using both ageing and conservative tracers. The salinity variations outside this fjord are large, and in contrast to the salinity, the artificial tracers provide a straight forward analysis of river water content. The ageing tracer is used to estimate transport time scales of river water (i.e. the time elapsed since the water left the river mouth). In May 2004, the typical age of river water leaving the fjord mouth is 5 days. As the major vertical mixing agent is wind, it controls the estuarine circulation and export of river water. When the wind stress is set to zero, the vertical mixing is reduced and the vertical salinity stratification is increased, and the river water can be effectively exported out of the fjord.We also analyse the river tracer fields and salinity field in relation to along estuary winds in order to detect signs of wind-induced straining of the along estuary density gradient. We find that events of down estuary winds are primarily associated with a reduced along estuary salinity gradient due to increased surface salinity in the innermost part of the fjord, and with an overall decrease in vertical stratification and river water content at the surface. Thus, our results show no apparent signs of wind-induced straining in this shallow fjord but instead they indicate increased levels of vertical mixing or upwelling during down estuary wind events.  相似文献   

6.
Circulation in typical fjords is characterized by a shallow brackish layer at the surface over a deep long and narrow saltwater column. This surface layer is responsible for the outflow of water from the fjord and is important for flushing of the basin and water quality maintenance. The vertical structure of circulation and transport is known to be easily disrupted, and we postulate that the stability of fjordal circulation may also be vulnerable to impacts from anthropogenic alterations, such as floating structures, which could constrict the mixing and transport in the upper layers of the water column. First, using simplified fjord geometry and a three-dimensional finite volume coastal ocean model (FVCOM), a baseline examination of tidally averaged current profiles in basins with and without sills is presented. The response, varying from a partially mixed estuary regime to classical fjord conditions matches many fjord-like basins such as those in Puget Sound, Washington. The effect of surface obstruction on tidally averaged currents and residence times was then examined by incorporation of a narrow block in the surface layer of the model across the width of the simplified fjord channel such that normal velocity in the horizontal direction was forced to zero. This block approximated the presence of a floating bridge and was further tested using the geometry of Hood Canal, a fjordal sub-basin with a sill in Puget Sound. The results show that tidally averaged mean outflow under the influence of such a constraint at the water surface could be reduced significantly. In the case of Hood Canal, preliminary results indicate that the presence of the floating bridge might have increased the residence times in the basin by 8–13%, which could be an important factor affecting water quality.  相似文献   

7.
Framvaren, a super-anoxic fjord in southern Norway, contains 7–8 mmoll−1 of sulphide and a total carbonate concentration of 18.5 mmol kg−1 in the bottom water. The chemistry of calcium has been studied, considering sources, biogenic and chemical processes and sedimentary sinks. Calcium associated with the bacteria biomass at the redox interface (18m depth) appears to be the primary source of dissolved calcium in the deep, anoxic water. Excess calcium and high total carbonate cause supersaturation of calcite, which is precipitated chemogenically. Calcite (and presumably some aragonite) is identified both in sediment trap material and the bottom sediments below the depth of supersaturation.  相似文献   

8.
《Journal of Sea Research》1999,41(3):163-178
The Koljö fjord on the Swedish west coast is a silled fjord characterised by strong stratification and stagnant bottom water, with periodically occurring hypoxic or anoxic conditions. In the Koljö fjord, renewal of the deep water generally occurs during winter. This study investigates how living benthic foraminifera react to hydrographic variations, periodic oxygen deficiency and variations in primary production. A series of monthly hydrographic measurements was made from August 1993 to December 1994, combined with sediment sampling along a (12–43 m) depth transect at five different sites. Monthly values of surface chlorophyll-a were available. Two periods of hypoxia to anoxia with one intervening period of oxic conditions, together with two autumn phytoplankton blooms and a spring phytoplankton bloom, made it possible to achieve the aims of this study. Below the pycnocline, three foraminiferal species: Elphidium excavatum clavatum, Elphidium incertum and Elphidium magellanicum represented more than 95% of the fauna. When oxygen content was very low, the foraminiferal fauna decreased but did not die out completely. A deep-water inflow in January 1994 caused the oxygen content to rise, but the foraminiferal population did not start to grow until three months later when the spring phytoplankton bloom sedimented out. Under oxic conditions, food availability seemed to limit the foraminiferal population. In itself, a very high organic content in the sediments does not seem to be a suitable food source; it is more likely that fresh phytoplankton is a potent food for these foraminifera. Reproduction of E. excavatum clavatum and E. incertum seems to have been triggered by increased food supply and sudden fluctuations in hydrographic variables. These foraminifera appear to grow from juvenile to adult in less than a month.  相似文献   

9.
The distributions of dissolved and solid phase Fe and Mn have been variously determined in vertical profiles through the water column and sediments at three stations in Bolstadfjord, S.W. Norway. Elevated concentrations of dissolved and suspended particulate Fe and Mn are associated with restricted deep waters as a result of redox reactions and with river discharge. The basin sediments are anoxic throughout but because of the greatly restricted circulation, remobilized Fe and Mn appear to remain predominantly trapped within the fjord. Differentiation of Fe and Mn occurs to the extent that Fe sulphide precipitation is ubiquitous in the sediments whereas the entrapment of Mn, probably through Mn carbonate precipitation, is found only in the sediments of the more seaward basin (maximum Mn content of 1·5% by weight).  相似文献   

10.
Framvaren, a permanently anoxic fjord on the southernmost point of Norway, is geomorphologically the result of glaciation and deglaciation. A barrier of glaciofluvial deposit was formed between the open sea and the landlocked water. Due to the isostatic uplift during the deglaciation period, the landlocked water was isolated from the sea and became a meromictic lake. Around 1850, a channel was cut in the barrier and the lake became a fjord with a sill depth of 2.5m and a basin depth of 180 m. The fjord is now permanently anoxic below 18 m depth. The tidal amplitude is close to 10 cm. Only 100 people live in the catchment area of Framvaren, hence it may be considered as a natural pristine laboratory, ideal for study by marine scientists interested in anoxic systems.  相似文献   

11.
A major phytoplankton change occurred during the late 1930s and early 1940s in Koljö Fjord, a sill fjord on the Swedish west coast. Dinoflagellate cyst concentrations increased tenfold over a short period of time, from hundreds of cysts per gram sediment to thousands; and the species composition of both dinoflagellate cysts and diatoms changed markedly. These changes took place during a period of extensive engineering work at the entrance to the fjord from the Skagerrak. At this time, the entire passage was straightened, a new channel was built in a previously shallow area, and the old connection was closed. This study investigates whether this engineering work could have sufficiently altered the surface-water circulation to bring about the change in the phytoplankton composition. Several mechanisms are explored by which the construction could have influenced the phytoplankton in the fjord. The primary mechanism is probably increased efficiency of tidal-generated surface-water exchange in the fjord, resulting in a larger transport of surface water from the Skagerrak and consequently a changed surface-water environment. This study highlights how engineering work can have a substantial impact on the local and regional marine environment, a factor that must not be overlooked in environmental planning.  相似文献   

12.
1Introduction Heterotrophicmicrobesarenowconsideredtobe significantcomponentsofthestructureandfunctionof marinepelagicecosystems.Heterotrophicbacteriacon- stituteamajorpoolofbiomassinopenecosystem (WilhelmandSuttle,1999).Theyconsumealargepor- tionofprimaryproduction(Li,1998;Sherryetal., 2002;Lietal.,2004),andtheymineralizemostofthe dissolvedorganiccarbonthattheyconsume(Azamet al.,1983;Richetal.,1997;Azam,1998).Therolesof planktonicprotists,suchasheterotrophicflagellates andciliates,inmicro…  相似文献   

13.
南海西北部晚第四纪典型地震相—沉积相特征   总被引:1,自引:0,他引:1  
南海西北部地形变化大,水深由近岸几十米变化至深海盆区的3 500m,跨越了陆架、陆坡、深海盆、岛礁等地貌单元。南海西北部也是深水油气的重要勘探地区。利用高分辨率单道地震资料,采用地震相分析方法,对研究区晚第四纪典型地震相—沉积相分布特征开展深入分析。研究区内的主要地震相包括:①席状、亚平行、强振幅、低连续、中频地震相;②披盖状、波状、中振幅、中—低连续、中低频地震相;③披盖状、平行—亚平行、中—弱振幅、中连续、中—低频地震相;④披盖状、平行、强振幅、高连续、中—高频地震相;⑤席状、平行、中—弱振幅、高连续、中—低频地震相;⑥披盖状、波状、弱振幅、低连续、低频地震相;⑦前积相;⑧下切充填地震相;⑨杂乱地震相;⑩条带状、波状、中—弱振幅、中—低连续、低频地震相;瑏瑡披盖状、平行、强振幅、高频、高连续地震相共11种。对地震相—沉积相及其分布特征的分析结果认为,区内晚第四纪主要发育有三角洲相、河道相、滨浅海相、浅海相、半深海相、深海相、滑塌相、斜坡相、浊流相、生物礁相等沉积相,其分布主要受海底地形地貌、构造运动等多种因素所控制。  相似文献   

14.
北极孔斯峡湾表层沉积物中溶解有机质的来源与转化历史   总被引:7,自引:0,他引:7  
在北极地区孔斯峡湾采集28个表层沉积物样品,测定了其中水溶性有机质(也称溶解有机质,DOM)的分子量分布、紫外/可见吸收光谱和三维荧光光谱特征,并利用平行因子分析(PARAFAC)模型对DOM的荧光组分和来源进行了解析。结果表明:孔斯峡湾表层沉积物中有色溶解有机质(CDOM)及其中的荧光溶解有机质(FDOM)含量均从内湾向外湾方向呈逐渐累积的趋势,但CDOM中的FDOM所占比例逐渐减小,与DOM趋于老龄化密切相关。沉积作用减弱以及长期的光化学降解和微生物降解作用对此起主要贡献,并导致腐殖质和小分子组分在沉积物DOM中所占的比例呈逐渐递增的趋势。沉积物DOM包含陆源类腐殖质、自生源类腐殖质和类蛋白等三个荧光组分,但是其组成比例空间差异很大。吸收光谱斜率比(SR)随自生源所占百分比增加而减小,随DOM腐殖质组分中陆源与自生源的比值增加而增加;腐殖化指数(HIX)随类腐殖质与类蛋白质比值和水深的增加而增加,生物源指数(BIX)随自生源比例增加而增加。峡湾沉积物DOM的组成和来源存在着高度的空间差异,在冰川湾区由水体颗粒有机质(POM)的近期转化和迁移而来,而在峡湾中央及口门附近以较老的腐殖质为优势,主要源于水体DOM长期迁移和转化。研究表明,FDOM/CDOM,SR,HIX和BIX等构成的CDOM光谱指纹信息可以作为揭露沉积物溶解有机质来源及迁移转化历史的工具,对探索海洋与冰川相互作用影响下的峡湾环境演变有着重要意义。  相似文献   

15.
An erosional channel and upslope-climbing sediment waves have been observed in Ytre Orkdalsfjorden and the marine fjord branch Gaulosen off the mouth of Gaula River in Trondheimsfjorden, central Norway. The submarine channel (up to 100–150 m wide and 12 m deep) is interpreted as the pathway of hyperpycnal flows and turbidity currents. It can be traced for 20 km on the seafloor from the mouth of Gaula River down to 500 m of water depth. Based on swath bathymetry and seismic data, the sediment waves are shown to have an accumulated thickness of 50–60 m. They are up to 8 m high, have up to 1-km-long crests, and wavelengths of 100–900 m. The sediment waves are attributed to hyperpycnal flows and turbidity currents overflowing the banks of the channel. Many of the sediment waves were instigated by pre-existing topography created by mass movements since early Holocene times.  相似文献   

16.
Wave types of landslide generated impulse waves   总被引:2,自引:0,他引:2  
Subaerial landslide generated impulse waves were investigated in a prismatic wave channel. Seven governing parameters, namely the still water depth, slide impact velocity, slide thickness, bulk slide volume, bulk slide density, slide impact angle, and grain diameter, were systematically varied. The generated impulse waves are nonlinear, intermediate- to shallow-water waves involving a small to considerable fluid mass transport. The Stokes wave, cnoidal wave, solitary wave, and bore theories were applied to describe the observed maximum waves. The theoretical and observed features of these four wave types are highlighted. A diagram allows to predict the wave type directly as a function of the slide parameters, the slide impact angle, and the still water depth.  相似文献   

17.
The persistence of the anthropogenic halogenated tracers, CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), carbon tetrachloride (CCl4) and methyl chloroform (CH3CCl3) in oxygen-depleted waters was investigated in the anoxic fjord Framvaren in southern Norway. A model for the ventilation of the water in the fjord was created based on tritium and CFC-12 profiles. The results suggest that CFC-12 is stable in this environment, although still affected by particulate scavenging, while the other four halocarbon species shows signs of significant removal in the oxic/anoxic interface. The first-order removal coefficients were calculated to be 0.35, 0.19, 1.23 and 0.31 year−1 for CFC-11, CFC-113, CCl4 and CH3CCl3, respectively. Significant downward flux of halogenated tracers by sinking organic matter is suggested by the model; the tracers are subsequently released to the water column by the remineralisation of the particles. This process acts as a sink of halogenated tracers in the surface waters, whereas it is a source for the deep waters. Our results points to bioaccumulation factors (BF) for the CFC tracers in the order of 4.4–5.4 (log BF), which is 100–600 times those previously reported. This might be of significance to near-shore, semi-enclosed, basins with a high flux of organic matter, but would still have little importance in open ocean basins.  相似文献   

18.
Potential tsunami waves were modelled on the basis of the morphology and geological setting of a late glacial submarine landslide localized in the north-eastern sector of the Sea of Marmara, using a three-dimensional algorithm with the purpose of assessing the future risk of tsunamogenic landslides in the region. The landslide occurred off the Tuzla Peninsula on the north-eastern slope of the Ç?narc?k Basin, the easternmost of the three deep Marmara basins. The mass movement appears to be related to the Main Marmara Fault that passes below the toe of the failed mass. Observations from earlier manned submersible dives suggest that the initiation of the slide was facilitated by secondary faults associated with the Hercynian orogeny and involved Palaeozoic shales dipping southwards towards the deep basin. Radiocarbon dating of core material, together with the well-dated Marmara sapropel above the chaotically mixed landslide surface, reveal that the latest landslide event occurred about 17 14C ka b.p. The uppermost scar of the landslide is found at 250 m and its toe at about 1,200 m below the present sea level. At the time of the slide, the Marmara Sea Basin was lacustrine, with its water level at ?85 m. In plan view the landslide has a distinctively triangular shape and the lateral extent of its toe is about 10 km. Multibeam bathymetric data indicate that the sliding motion probably occurred in two phases: a slower phase affecting the eastern part, characterized by an undulating surface, and a more rapid phase affecting the western part that possibly created tsunami waves. In the seismic sections, older failed slide masses can be clearly identified; these were probably displaced during marine isotopic stage 6 (~127–160 ka b.p.). The front of this buried material is located more than 1.5 km further south of the fault. We used a three-dimensional, Green’s function-based potential theory approach, rather than shallow-water equations commonly used in conventional tsunami simulations. The solution algorithm is based on a source-sink formulation and an integral equation. The results indicate that the maximum height of the tsunami in the Ç?narc?k Basin could have reached about half the average thickness of the sliding mass over a lateral extent of 7 km. Assuming an average thickness of 30 m for the landslide, and considering that the water level at 17 ka b.p. was at about ?85 m, the modelling shows that the maximum wave height generated by the slide would have been about 15–17 m.  相似文献   

19.
Circulation and water properties within Columbia Bay, Alaska, are dominated by the effects of Columbia Glacier at the head of the Bay. The basin between the glacier terminus and the terminal moraine (sill depth of about 22 m) responds as an ‘upside down’ estuary with the subglacial discharge of freshwater entering at the bottom of the basin. The intense vertical mixing caused by the bouyant plume of freshwater creates a homogeneous water mass that exchanges with the far-field water through either a two- or a three-layer flow. In general, the glacier acts as a large heat sink and creates a water mass which is cooler than that in fjords without tidewater glaciers. The predicted retreat of Columbia Glacier would create a 40 km long fjord that has characteristics in common with other fjords in Prince William Sound.  相似文献   

20.
《Marine Chemistry》2001,73(1):37-51
Vertical profiles of 14C-uptake were acquired monthly from the mouths and landward stations of periodically anoxic Saanich Inlet and oxygenated Jervis Inlet, British Columbia, Canada from August 1985 to October 1989. Saanich Inlet (490 g C m−2 year−1) was 1.7 times more productive than Jervis Inlet (290 g C m−2 year−1) and primary production toward the mouths of both inlets was 1.4 times higher than at the landward stations. The elevated rates of primary production in Saanich Inlet may have been due to exchange with the nutrient-rich surface waters of the passages leading to the Pacific Ocean and the up-inlet gradients in both fjords also may have reflected relative nutrient supply. Sediment-trap results show enhanced fluxes of biogenic silica to the deep waters of Saanich Inlet; associated organic matter is likely to have caused a large oxygen demand. Combined with the high primary production and export flux, low rates of vertical mixing and particle-entrapment within the fjord, factors associated with weak estuarine circulation as well as weak winds and tides in Saanich Inlet, may also stimulate anoxia.Although in Jervis Inlet there is more stagnant water behind the sill and deep-water renewals appear to be less frequent than in Saanich Inlet, the deep sill allows degradation of a significant fraction of the sinking organic matter before the stagnant waters are reached, reducing the chances of oxygen depletion in the bottom waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号