首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This paper focuses on the characteristics of the oxygen minimum zone (OMZ) as observed in the Arabian Sea over the complete monsoon cycle of 1995. Dissolved oxygen, nitrite, nitrate and density values are used to delineate the OMZ, as well as identify regions where denitrification is observed. The suboxic conditions within the northern Arabian Sea are documented, as well as biological and chemical consequences of this phenomenon. Overall, the conditions found in the suboxic portion of the water column in the Arabian Sea were not greatly different from what has been reported in the literature with respect to oxygen, nitrate and nitrite distributions. Within the main thermocline, portions of the OMZ were found that were suboxic (oxygen less than ∼4.5 μM) and contained secondary nitrite maxima with concentrations that sometimes exceeded 6.0 μM, suggesting active nitrate reduction and denitrification. Although there may have been a reduction in the degree of suboxia during the Southwest monsoon, a dramatic seasonality was not observed, as has been suggested by some previous work. In particular, there was not much evidence for the occurrence of secondary nitrite maxima in waters with oxygen concentrations greater than 4.5 μM. Waters in the northern Arabian Sea appear to accumulate larger nitrate deficits due to longer residence times even though the denitrification rate might be lower, as evident in the reduced nitrite concentrations in the northern part of the basin. Organism distributions showed string relationships to the oxygen profiles, especially in locations where the OMZ was pronounced, but the biological responses to the OMZ varied with type of organism. The regional extent of intermediate nepheloid layers in our data corresponds well with the region of the secondary nitrite maximum. This is a region of denitrification, and the presence and activities of bacteria are assumed to cause the increase in particles. ADCP acoustic backscatter measurements show diel vertical migration of plankton or nekton and movement into the OMZ. Daytime acoustic returns from depth were strong, and the dawn sinking and dusk rise of the fauna were obvious. However, at night the biomass remaining in the suboxic zone was so low that no ADCP signal was detectable at these depths. There are at least two groups of organisms, one that stays in the upper mixed layer and another that makes daily excursions. A subsurface zooplankton peak in the lower OMZ (near the lower 4.5 μM oxycline) was also typically present; these animals occurred day and night and did not vertically migrate.  相似文献   

3.
Vertical distributions of the potential activities of some key enzymes mediating nitrification and denitrification were investigated within the oxygen (O2) minimum zone of the Arabian Sea at a number of locations between latitudes 17°N and 21°N and longitudes 63°E and 68°E so as to get an insight into the predominant biochemical mode(s) of production and consumption of nitrous oxide (N2O). Results revealed that the dissimilatory nitrate (NO3) reduction activity was generally very low or absent within the σθ range 26.6–26.8, which corresponds to the Persian Gulf Watermass (PGW). Depth profiles of nitrate reductase (NaR), nitrite reductase (NiR) and ammonia monooxygenase (AMO) activities were compared with those of O2, NO3, nitrite (NO2) and N2O, and it is concluded that nitrifier denitrification rather than heterotrophic denitrification is active within the core of PGW. The presence of multiple peaks of AMO activity coinciding with distinct maxima in the O2 profile and with a trend opposite to that of NaR activity indicates that the two processes, viz., classical and nitrifier denitrification, occur in discrete layers, probably determined by the variations in the ambient O2 concentrations at various depths surrounding the PGW core. Further, it appears that at the depths where nitrifier denitrification is active in the absence of heterotrophic denitrification, N2O builds up as its consumption may be inhibited by O2. Possible reasons for the occurrence of appreciable nitrate deficit within the core of PGW, where dissimilatory NO3 reduction is lacking, are discussed.  相似文献   

4.
5.
The presence of a strongly developed oxygen minimum zone (OMZ; [O2]<2 μM) in the northeastern Arabian Sea affords the opportunity to investigate whether oxygen deficiency in bottom waters enhances the preservation of organic matter in the underlying sediments. We explored if the observed patterns of organic matter accumulation could be explained by differences in productivity, sedimentation rate, water depth, and mineral texture. The differences in the burial rates of organic matter in sediments deposited within or below the OMZ could not be explained on the basis of these factors. All collected evidence points to a coupling of low oxygen concentrations and enhanced organic matter preservation. Under more oxygenated conditions bioturbation as well as the presence of labile manganese and iron oxides are probably important factors for a more efficient microbially mediated degradation of organic matter. Pore water profiles of dissolved Mn2+ and Fe2+ show that reduction of manganese and iron oxides plays a minor role in sediments lying within the OMZ and a larger role in sediments lying below the OMZ.  相似文献   

6.
This paper provides the first comprehensive analysis of calanoid copepod vertical zonation and community structure at midwater depths (300–1000 m) through the lower oxygen gradient (oxycline) (0.02 to 0.3 ml/L) of an oxygen minimum zone (OMZ). Feeding ecology was also analyzed. Zooplankton were collected with a double 1 m2 MOCNESS plankton net in day and night vertically-stratified oblique tows from 1000 m to the surface at six stations during four seasons as part of the 1995 US Joint Global Ocean Flux Study (JGOFS) Arabian Sea project. The geographic comparison between a eutrophic more oxygenated onshore station and an offshore station with a strong OMZ served as a natural experiment to elucidate the influence of depth, oxygen concentration, season, food resources, and predators on the copepod distributions.Copepod species and species assemblages of the Arabian Sea OMZ differed in their spatial and vertical distributions relative to environmental and ecological characteristics of the water column and region. The extent and intensity of the oxycline at the lower boundary of the OMZ, and its spatial and temporal variability over the year of sampling, was an important factor affecting distributional patterns. Calanoid copepod species showed vertical zonation through the lower OMZ oxycline. Clustering analyses defined sample groups with similar copepod assemblages and species groups with similar distributions. No apparent diel vertical migration for either calanoid or non-calanoid copepods at these midwater depths was observed, but some species had age-related differences in vertical distributions. Subzones of the OMZ, termed the OMZ Core, the Lower Oxycline, and the Sub-Oxycline, had different copepod communities and ecological interactions. Major distributional and ecological changes were associated with surprisingly small oxygen gradients at low oxygen concentrations. The calanoid copepod community was most diverse in the most oxygenated environments (oxygen >0.14 ml/L), but the rank order of abundance of species was similar in the Lower Oxycline and Sub-Oxycline. Some species were absent or much scarcer in the OMZ Core. Two copepod species common in the Lower Oxycline were primarily detritivorous but showed dietary differences suggesting feeding specialization. The copepod Spinocalanus antarcticus fed primarily on components of the vertical particulate flux and suspended material, a less versatile diet than the co-occurring copepod Lucicutia grandis. Vertical zonation of copepod species through the lower OMZ oxycline is probably a complex interplay between physiological limitation by low oxygen, potential predator control, and potential food resources. Pelagic OMZ and oxycline communities, and their ecological interactions in the water column and with the benthos, may become even more widespread and significant in the future ocean, if global warming increases the extent and intensity of OMZs as predicted.  相似文献   

7.
最小含氧带(Oxygen Minimum Zone, OMZ)是指海洋中层水体处存在的稳定的溶解氧(Dissolved Oxygen, DO)极小值层, OMZ的分布与变化对南海生态系统和生地化循环具有重要意义。本文利用2019年7—9月“海翼”号水下滑翔机(Sea-wing Glider)在南海北部陆坡区的组网观测数据, 对南海北部陆坡区OMZ的空间分布特征进行了分析。结果显示, 在垂向上, 研究区域内DO极小值层出现在深度约700~900m处, 其浓度约为80~100μmol·L-1, 且700~900m深度范围内DO浓度变化不大, 形成了厚度约为200m的OMZ。在水平方向上, OMZ自陆坡西南部起向东北方向延伸, 厚度由西南至东北逐渐变薄, 整体呈楔形分布, 并在靠近吕宋海峡处逐渐消失。此外, 本研究还选取了两台水下滑翔机7—8月连续两周内的观测数据, 经计算显示, OMZ区域内的DO浓度在跨陆坡方向上的平均变化速率为0.023μmol·L-1·d-1(增加), 在沿陆坡方向上为-0.034μmol·L-1·d-1(减少)。沿吕宋海峡入侵南海的高氧水能够解释OMZ东北部DO浓度局部升高的现象, OMZ的分布特征和形成原因与海水的平流运动、水团分布和水体层化等物理过程, 以及生物呼吸、有机物分解和还原性物质的氧化等多种影响因素有关。  相似文献   

8.
Recent studies of the nitrogen gas excess produced during water column denitrification have indicated that water column denitrification rates calculated using nitrate deficit-type methods could be a substantial underestimate. Since there are no other significant processes that produce (or consume) N2 in the oxygen deficient zone (ODZ), its excess above background can be used to estimate the amount of denitrification, avoiding assumptions made in nitrate deficit calculations of the composition of the respired organic matter and also uncertainties in the nitrogen removal pathways. Dissolved N2, Ar, and nutrient concentrations were measured at 2 stations in the ODZ of the eastern tropical South Pacific (ETSP) in order to compare the nitrogen gas excess with the dissolved inorganic nitrogen (DIN) deficit due to denitrification. In contrast with previous findings in the Arabian Sea ODZ, the shapes of the N2 excess and DIN deficit profiles were similar in the ETSP ODZ, with maxima at the top of the ODZ. Maximum DIN deficits at each station were 19 and 18 μM N compared to the maximum N2 excesses of 15 and 20 μM N, respectively. Given the same considerations of the volume and residence time for the oxygen deficient zone waters, denitrification rates for the ETSP estimated from the N2 excess would be comparable or no greater than 30% larger than the one determined using the DIN deficit. This implies that the source of the DIN removed from the ODZ is either deep sea nitrate or organic matter with an N:P ratio close to Redfield.  相似文献   

9.
A three-dimensional hydrodynamic-ecosystem model was used to examine the factors determining the spatio-temporal distribution of denitrification in the Arabian Sea. The ecosystem model includes carbon and nitrogen as currencies, cycling of organic matter via detritus and dissolved organic matter, and both remineralization and denitrification as sinks for material exported below the euphotic zone. Model results captured the marked seasonality in plankton dynamics of the region, with characteristic blooms of chlorophyll in the coastal upwelling regions and central Arabian Sea during the southwest monsoon, and also in the northern Arabian Sea during the northeast monsoon as the mixed layer shoals. Predicted denitrification was 26.2 Tg N yr−1,the greatest seasonal contribution being during the northeast monsoon when primary production is co-located with the zone of anoxia. Detritus was the primary organic substrate consumed in denitrification (97%), with a small (3%) contribution by dissolved organic matter. Denitrification in the oxygen minimum zone was predicted to be fuelled almost entirely by organic matter supplied by particles sinking vertically from the euphotic zone above (0.73 mmol N m−2 d−1) rather than from lateral transport of organic matter from elsewhere in the Arabian Sea (less than 0.01 mmol N m−2 d−1). Analysis of the carbon budget in the zone of denitrification (north of 10°N and east of 55°E) indicates that the modelled vertical export flux of detritus, which is similar in magnitude to estimates from field data based on the 234Th method, is sufficient to account for measured bacterial production below the euphotic zone in the Arabian Sea.  相似文献   

10.
解氮作用是指微生物引导的结合态NO3-转化为N2O或N2等一种或两种气体的非同化吸收过程,即NO3-→、NO2-→NO→N2O→N2[1].该过程是自然界许多水体中结合态NO3转化为气态N2的重要形式,结合态NO3是水体初级生产的限制因素,解氮作用的中间产物N2O是与大气臭氧层密切相关因子。因此,人们注重解氮作用的研究。  相似文献   

11.
In spite of the fact that oxygen-deficient waters with ⩽20 μM of dissolved oxygen—known as oxygen minimum zones (OMZs)—occupy only ∼1% of the volume of the global ocean, they disproportionately affect global biogeochemical cycles, particularly the nitrogen cycle. The macrobiota diversity in OMZs is low, but the fauna that do inhabit these regions present special adaptations to the low-oxygen conditions. Conversely, microbial communities in the OMZ water column and sediments are abundant and phylogenetically and metabolically very diverse, and microbial processes occurring therein (e.g., denitrification, anammox, and organic matter degradation) are important for global marine biogeochemical cycles. In this introductory article, we present the collection of papers for the special volume on the OMZ of the eastern South Pacific, one of the three main open-ocean oxygen-deficient regions of the global ocean. These papers deal with aspects of regional oceanography, inorganic and organic geochemistry, ecology, and the biochemistry of micro and macro organisms—both in the plankton and in the sediments—and past changes in the fish scales preserved in the sediments bathed by OMZ waters.  相似文献   

12.
Benthic foraminiferal and sediment biogeochemical data (total organic carbon, calcium carbonate and biogenic opal contents) in two cores (1265 and 1312 m water depths) from the southeastern Sakhalin slope and one core (839 m water depth) from the southwestern Kamchatka slope were investigated to reconstruct variations of the oxygen minimum zone during the last 50 ka in the Okhotsk Sea. The oxygen minimum zone was less pronounced during cooling in the MIS 2 that is suggested to be caused by a maximal expansion of sea ice cover, decrease of marine productivity and increase of production of the oxygenated Okhotsk Sea Intermediate Water (OSIW). A two-step-like strengthening of oxygen minimum zone during the warmings in the Termination 1a and 1b was linked to (1) enhanced oxygen consumption due to degradation of large amount of organic matter in the water column and bottom sediments, originated from increased marine productivity and supply of terrigenous material from the submerged northern shelves; (2) sea ice cover retreat and reduction of OSIW production; (3) freely inflow of the oxygen-depleted intermediate water mass from the North Pacific.  相似文献   

13.
The unique physical and biogeochemical characteristics of oxygen minimum zones (OMZs) influence plankton ecology, including zooplankton trophic webs. Using carbon and nitrogen stable isotopes, this study examined zooplankton trophic webs in the Eastern Tropical North Pacific (ETNP) OMZ. δ13C values were used to indicate zooplankton food sources, and δ15N values were used to indicate zooplankton trophic position and nitrogen cycle pathways. Vertically stratified MOCNESS net tows collected zooplankton from 0 to 1000 m at two stations along a north-south transect in the ETNP during 2007 and 2008, the Tehuantepec Bowl and the Costa Rica Dome. Zooplankton samples were separated into four size fractions for stable isotope analyses. Particulate organic matter (POM), assumed to represent a primary food source for zooplankton, was collected with McLane large volume in situ pumps.The isotopic composition and trophic ecology of the ETNP zooplankton community had distinct spatial and vertical patterns influenced by OMZ structure. The most pronounced vertical isotope gradients occurred near the upper and lower OMZ oxyclines. Material with lower δ13C values was apparently produced in the upper oxycline, possibly by chemoautotrophic microbes, and was subsequently consumed by zooplankton. Between-station differences in δ15N values suggested that different nitrogen cycle processes were dominant at the two locations, which influenced the isotopic characteristics of the zooplankton community. A strong depth gradient in zooplankton δ15N values in the lower oxycline suggested an increase in trophic cycling just below the core of the OMZ. Shallow POM (0–110 m) was likely the most important food source for mixed layer, upper oxycline, and OMZ core zooplankton, while deep POM was an important food source for most lower oxycline zooplankton (except for samples dominated by the seasonally migrating copepod Eucalanus inermis). There was no consistent isotopic progression among the four zooplankton size classes for these bulk mixed assemblage samples, implying overlapping trophic webs within the total size range considered.  相似文献   

14.
Two sediment cores, ABP-32/GC-01R and ABP-32/GC-03 were collected at a water depth of 642 m and 1086 m off Goa from the present day Oxygen Minimum Zone (OMZ) of eastern Arabian Sea (EAS) cover time span of last 18 ka and 32 ka respectively were analysed for multi-proxy redox-sensitive elements to understand the variation in the redox conditions and factors responsible for its development.Redox-sensitive elements concentration and their normalized ratios (Mn/Al, U/Th, Mo/Al and Ce/Ce*) suggest that sediment core ABP-32/GC-01R is under more reducing conditions due to its location within the centre of OMZ compared to core ABP-32/GC-03 which is at the base of OMZ. Sediments from the EAS are of non-euxinic environments where dissolved sulfide is present but restricted to the sediment pore-waters. Lack of significant correlation (r=< 0.1) of organic carbon with U and Mo suggest that productivity may not have control on the development of reducing conditions. The lowest Mn/Al ratio, strong negative Ce/Ce* anomaly and remarkable enrichment of U/Th and Mo/Al ratios during the last deglaciation, and Heinrich events (H1, H2, H3) indicate intense reducing conditions probably due to poor ventilation by oxygen depleted bottom waters from Subantarctic Mode Waters (SAMW) - Antarctic Intermediate waters (AAIW). There is a distinct lathanide fractionation in the sediment cores where, La(n)/Yb(n) ratio is <1, ≈1 and >1 during the last 10 ka (Holocene), 14–10 ka (includes-Younger Dryas and Bǿlling-Allerǿd), 18–14 ka (last deglaciation) and Heinrich events suggesting less reducing, terrigenous dominated and intense reducing condition respectively.  相似文献   

15.
Estimates of macrofaunal secondary production and normalized biomass size-spectra (NBSS) were constructed for macrobenthic communities associated with the oxygen minimum zone (OMZ) in four areas of the continental margin off Chile. The presence of low oxygen conditions in the Humboldt Current System (HCS) off Chile was shown to have important effects on the size structure and secondary production of the benthic communities living in this ecosystem. The distribution of normalized biomass by size was linear (log2–log2 scale) at all stations. The slope of the NBSS ranged from −0.481 to −0.908. There were significant differences between the slopes of the NBS-spectra from the stations located in the OMZ (slope = −0.837) and those located outside the OMZ (slope = −0.463) (p < 0.05). The results of this study suggest that low oxygen conditions (<0.5 ml L−1) appear to influence biomass size-spectra, because small organisms are better able to satisfy their metabolic demands. The annual secondary production was higher off central Chile (6.8 g C m−2 y−1) than off northern Chile (2.02 g C m−2 y−1) and off southern Chile (0.83 g C m−2 y−1). A comparison with other studies suggests that secondary production in terms of carbon equivalents was higher than in other upwelling regions.  相似文献   

16.
Measurements of dissolved gases (O2, N2O), nutrients (NO3, NO2, PO43−), and oceanographic variables were performed off northern Chile (∼21°S) between March 2000 and July 2004, in order to characterize the existing oxygen minimum zone (OMZ) and identify processes involved in N2O cycling. Both N2O and NO3 displayed sharp, shallow peaks with concentrations of up to 124 nM (1370% saturation) and 26 μM, respectively, in association with a strong oxycline that impinges on the euphotic zone. NO2 accumulation below the oxycline's base reached up to 9 μM. The vertical distribution of physical and chemical parameters and the existing relationships between apparent oxygen utilization (AOU), apparent N2O production (ΔN2O), and NO3 revealed three main layers within the upper OMZ. The first layer, or the upper part of the oxycline, is located between the base of the mixed layer and the mid-point of the oxycline (around σt=25.5 kg m−3). There the O2 declines from ∼250 to ∼50 μM, and strong (but opposing) O2 and NO3 gradients and their associated AOU–ΔN2O and AOU–NO3 relationships indicate that nitrification produces N2O and NO3 in the presence of light. The second layer, or lower part of the oxycline, represents the upper OMZ boundary and is located between the middle and the base of the oxycline (25.9<σt<26.1 kg m−3). In this layer NO3 reduction begins at O2 levels ranging from ∼50 to ∼11 μM and accumulation of 41–68% of the ΔN2O pool occurs. The accumulation of N2O (but not of NO2 or NH4+) and the observed AOU–ΔN2O and AOU–NO3 relationships (which are opposite to those of the overlying first layer) suggest that a coupling between nitrification and NO3 reduction is involved in N2O cycling in this second layer. The third layer is the OMZ core, where the O2 concentration remains constant (O2<11 μM). It coincides with σt>26.2 kg m−3, which is typical of Equatorial Subsurface Water (ESSW). In this layer, N2O and NO3 continue to decrease, but a large NO2 accumulation is observed. Considering all the data, a biogeochemical model for the upper OMZ off northern of Chile is proposed, in which nitrification and denitrification differentially mediate N2O cycling in each layer.  相似文献   

17.
18.
The Arabian Sea is characterized by a mid‐depth layer of reduced dissolved oxygen (DO) concentration or oxygen minimum zone (OMZ ‐DO concentration <0.5 ml·l?1) at ~150–1000 m depth. This OMZ results from the flux of labile organic matter coupled with limited intermediate depth water ventilation. Generally, benthic animals in the OMZ have morphological and physiological adaptations that maximize oxygen uptake in the limited oxygen availability. Characteristics of OMZ benthos have been described from only a few localities in the Arabian Sea. We measured the bottom water DO and studied the characteristics of infaunal macrobenthos of the Indian western continental shelf by collecting samples at 50, 100 and 200 m in depth from 7° to 22° N. The DO values observed at 200 m (0.0005–0.24 ml·l?1) indicated that this area is lying within an OMZ. Five major taxa, namely Platyhelminthes, Sipunculoidea, Echiuroidea, Echinodermata and Cephalochordata were absent from the samples collected from this OMZ. In general, declines in total macrobenthic density and biomass and polychaete species richness and diversity were observed in this OMZ compared with the shallower depths above it. Community analyses of polychaetes revealed the dominance of species belonging to families Spionidae, Cirratulidae and Paraonidae in this OMZ. Low oxygen condition was more pronounced in the northern continental shelf edge (≤0.03 ml·l?1), where the majority of spionids including Prionospio pinnata and cirratulids were absent; whereas amphipod, isopod and bivalve communities were not impacted.  相似文献   

19.
Monsoon-driven biogeochemical processes in the Arabian Sea   总被引:3,自引:0,他引:3  
Although it is nominally a tropical locale, the semiannual wind reversals associated with the Monsoon system of the Arabian Sea result annually in two distinct periods of elevated biological activity. While in both cases monsoonal forcing drives surface layer nutrient enrichment that supports increased rates of primary productivity, fundamentally different entrainment mechanisms are operating in summer (Southwest) and winter (Northeast) Monsoons. Moreover, the intervening intermonsoon periods, during which the region relaxes toward oligotrophic conditions more typical of tropical environments, provide a stark contrast to the dynamic biogeochemical activity of the monsoons. The resulting spatial and temporal variability is great and provides a significant challenge for ship-based surveys attempting to characterize the physical and biogeochemical environments of the region. This was especially true for expeditions in the pre-satellite era.Here, we present an overview of the dynamical response to seasonal monsoonal forcing and the characteristics of the physical environment that fundamentally drive regional biogeochemical variability. We then review past observations of the biological distributions that provided our initial insights into the pelagic system of the Arabian Sea. These evolved through the 1980s as additional methodologies, in particular the first synoptic ocean color distributions gathered by the Coastal Zone Color Scanner, became available. Through analyses of these observations and the first large-scale physical–biogeochemical modeling attempts, a pre-JGOFS understanding of the Arabian Sea emerged. During the 1990s, the in situ and remotely sensed observational databases were significantly extended by regional JGOFS activities and the onset of Sea-viewing Wide Field-of-View Sensor ocean color measurements. Analyses of these new data and coupled physical–biogeochemical models have already advanced our understanding and have led to either an amplification or revision of the pre-JGOFS paradigms. Our understanding of this complex and variable ocean region is still evolving. Nonetheless, we have a much better understanding of time–space variability of biogeochemical properties in the Arabian Sea and much deeper insights about the physical and biological factors that drive them, as well as a number of challenging new directions to pursue.  相似文献   

20.
Biogeochemical ocean-atmosphere transfers in the Arabian Sea   总被引:2,自引:2,他引:2  
Transfers of some important biogenic atmospheric constituents, carbon dioxide (CO2), methane (CH4), molecular nitrogen (N2), nitrous oxide (N2O), nitrate , ammonia (NH3), methylamines (MAs) and dimethylsulphide (DMS), across the air–sea interface are investigated using published data generated mostly during the Arabian Sea Process Study (1992–1997) of the Joint Global Ocean Flux Study (JGOFS). The most important contribution of the region to biogeochemical fluxes is through the production of N2 and N2O facilitated by an acute, mid-water deficiency of dissolved oxygen (O2); emissions of these gases to the atmosphere from the Arabian Sea are globally significant. For the other constituents, especially CO2, even though the surface concentrations and atmospheric fluxes exhibit extremely large variations both in space and time, arising from the unique physical forcing and associated biogeochemical environment, the overall significance in terms of their global fluxes is not much because of the relatively small area of the Arabian Sea. Distribution and air–sea exchanges of some of these constituents are likely to be greatly influenced by alterations of the subsurface O2 field forced by human-induced eutrophication and/or modifications to the regional hydrography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号