首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A 2-yr record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean. Particle fluxes, of ∼71–78% biogenic origin (i.e. consisting of CaCO3, organic matter and opal) on average, decrease about six-fold from the mesotrophic site (highest fluxes in the North Atlantic) nearer the Mauritanian margin (18°30′N, 21°00′W) to the remote, open-ocean, oligotrophic site (21°00′N, 31°00′W). This decrease largely reflects the difference in total primary production between the two sites, from ∼260 to ∼110 g organic C m−2 yr−1. At both sites, temporal variability of the downward particle flux seems to be linked to westward surface currents, which are likely to transport seaward biomass-rich water masses from regions nearer the coast. The influence of coastal upwelling is marked at the mesotrophic site. The large differences between the 1991 and 1992 records at that site, where carbon export is large, underscore the interest of long-term studies for export budget estimates. The different productivity regimes at the two sites seem to induce contrasting downward modes of transport of the particulate matter, as shown in particular by the faster settling rates and the higher E ratio (particulate organic carbon export versus total primary production) estimated at the mesotrophic site.  相似文献   

2.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

3.
Seasonal depth stratified plankton tows, sediment traps and core tops taken from the same stations along a transect at 29°N off NW Africa are used to describe the seasonal succession, the depth habitats and the oxygen isotope ratios (δ18Oshell) of five planktic foraminiferal species. Both the δ18Oshell and shell concentration profiles show variations in seasonal depth habitats of individual species. None of the species maintain a specific habitat depth exclusively within the surface mixed layer (SML), within the thermocline, or beneath the thermocline. Globigerinoides ruber (white) and (pink) occur with moderate abundance throughout the year along the transect, with highest abundances in the winter and summer/fall season, respectively. The average δ18Oshell of G. ruber (w) from surface sediments is similar to the δ18Oshell values measured from the sediment-trap samples during winter. However, the δ18Oshell of G. ruber (w) underestimates sea surface temperature (SST) by 2 °C in winter and by 4 °C during summer/fall indicating an extension of the calcification/depth habitat into colder thermocline waters. Globigerinoides ruber (p) continues to calcify below the SML as well, particularly in summer/fall when the chlorophyll maximum is found within the thermocline. Its vertical distribution results in δ18Oshell values that underestimate SST by 2 °C. Shell fluxes of Globigerina bulloides are highest in summer/fall, where it lives and calcifies in association with the deep chlorophyll maximum found within the thermocline. Pulleniatina obliquiloculata and Globorotalia truncatulinoides, dwelling and calcifying a part of their lives in the winter SML, record winter thermocline (~180 m) and deep surface water (~350 m) temperatures, respectively. Our observations define the seasonal and vertical distribution of multiple species of foraminifera and the acquisition of their δ18Oshell.  相似文献   

4.
Hydrographic and plankton surveys were conducted over the basin and slope of the southeastern Bering Sea during April, June/July and September of 1994 and in June/July 1995, and seasonal and spatial variations of zooplankton community were investigated in relation to the oceanographic conditions. In July 1994, sea surface temperature (SST) ranged 5.3–8.7 °C, and the thermocline was between 30 and 50 m. In July 1995, however, SST was warmer (7.3–12.4 °C), and the thermocline was shallower (20–30 m). The thermal front at the shelf was also stronger in July 1995 than in July 1994. Surface salinity was higher in 1994 than 1995. A total of 17 taxonomic groups of zooplankton were identified from the plankton samples. In 1994, the highest density was observed in September. Copepods were the major taxon during all surveys. While some taxa such as euphausiids, ostracods, and Neocalanus spp. were most abundant in spring, others such as Calanus spp., Metridia pacifica, chaetognaths, and pteropods were most abundant in September. Adults and late-stage copepodites of Eucalanus bungii were abundant in spring, and were replaced by 1st–3rd stages of copepodites in summer. Zooplankton density was ca. 4 times higher in 1995 than in 1994, in part because of warm water temperature.  相似文献   

5.
In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These results may explain the distribution pattern of this species in natural habitats, where it is generally restricted to tide pools in the intertidal zone of wave-swept rocky shores which could provide shelter from desiccation stress during low tide.  相似文献   

6.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

7.
The giant diatom Ethmodiscus was examined along an east–west transect at 28–30°N during 2002 and 2003 to determine if abundance, chemical composition or physiological status of this largest of diatoms varied on the scale of 100's–1000's of km in North Pacific gyre. Abundance ranged from <0.1–>2.0 cells m−3 and supported the notion of an abundance mosaic reported previously. However, there was only minimal support for the relationship between abundance and nutrient concentration at 125 m reported previously. Cellular chlorophyll varied little along the transect (7.3–10.9 ng chl cell−1) except at the westernmost station. Cellular N and P quotas co-varied 3–4.5 fold (mean=50.8±3.7 and 3.7±0.8 nmol N and P cell−1) and yielded N:P ratios that closely clustered around the Redfield ratio (average=14.6±1.1). Only low levels of chlorophyll-normalized alkaline phosphatase (APase) activity were observed (0.4–2.5 nmol P μg chl−1 h−1) with APase activity lower than that in either the bulk water, or co-occurring Trichodesmium spp. and Pyrocystis noctiluca. The active fluorescence parameter Fv:Fm, a property sensitive to Fe stress, was uniformly high at all stations (average=0.73±0.04 for 2003, and 0.69±0.05 for 2002), indicating sufficient Fe for optimum photosynthetic competence. These results contrasted sharply with results from Rhizosolenia mats reported along the same transect where there was a significant decline westward in Fv:Fm. Both ferredoxin (Fd) and flavodoxin accumulated in cells of Ethmodiscus, resulting in Fd Index values of<0.6. Iron cell quotas ranged from 0.7–5.1 pmol Fe cell−1. When normalized to cytoplasmic volume, the Fe μm−3 was comparable to that of Escherichia coli. We note that the disproportionate contribution of the vacuole (with its high organic content) to total volume typical of large diatoms is a potentially significant source of error in Fe:C ratios and suggest that Fe should be normalized to cytoplasmic volume whenever possible to permit valid intercomparisons between studies. The composition, Fv:Fm data and Fe:C ratio suggest a relatively uniform population experiencing little N, P or Fe stress. The uncoupling of the Fd Index from these measures is consistent with previous findings showing that the expression of flavodoxin can be characterized as an early stress response and that its accumulation is not necessarily correlated with physiological deficit. Ethmodiscus appears to be well adapted to some of the most oligotrophic waters in the ocean. Because it is an important sedimentary marker, the biology of living Ethmodiscus provides insights into the source of extensive Ethmodiscus oozes. Mass sedimentation after frontal accumulation has been suggested as a source for these oozes. Our data contain no evidence that the flux is linked directly to Fe, N or P stress.  相似文献   

8.
Variations in the nutrient concentrations were studied during two cruises to the Arabian Sea. The situation towards the end of the southwest monsoon season (September/October 1994) was compared with the inter-monsoonal season during November and December 1994. Underway surface transects showed the influence of an upwelling system during the first cruise with deep, colder, nutrient-rich water being advected into the surface mixed layer. During the southwesterly monsoon there was an area of coastal Ekman upwelling, bringing colder water (24.2°C) into the surface waters of the coastal margin. Further offshore at about 350 km there was an area of Ekman upwelling, as a result of wind-stress curl, north of the Findlater Jet axis; this area also had cooler surface water (24.6°C). Further offshore (>1000 km) the average surface temperatures increased to >27°C. These waters were oligotrophic with no evidence of the upwelling effects observed further inshore. In the upwelling regions nutrient concentrations in the close inshore coastal zone were elevated (NO3=18 μmol l-1, PO4=1.48 μmol l-1); higher concentrations also were measured at the region of offshore upwelling off the shelf, with a maximum nitrate concentration of 12.5 μmol l-1 and a maximum phosphate concentration of 1.2 μmol l-1. Nitrate and phosphate concentrations decreased with increasing distance offshore to the oligotrophic waters beyond 1400 km, where typical nitrate concentrations were 35.0 nmol l-1 (0.035 μmol l-1) in the surface mixed layer. A CTD section from the coastal shelf, to 1650 km offshore to the oligotrophic waters, clearly showed that during the monsoon season, upwelling is one of the major influences upon the nutrient concentrations in the surface waters of the Arabian Sea off the coast of Oman. Productivity of the water column was enhanced to a distance of over 800 km offshore. During the intermonsoon period a stable surface mixed layer was established, with a well-defined thermocline and nitracline. Surface temperature was between 26.8 and 27.4°C for the entire transect from the coast to 1650 km offshore. Nitrate concentrations were typically between 2.0 and 0.4 μmol l-1 for the transect, to about 1200 km where the waters became oligotrophic, and nitrate concentrations were then typically 8–12 nmol l-1. Ammonia concentrations for the oligotrophic waters were typically 130 nmol l-1, and are reported for the first time in the Indian Ocean. The nitrogen/phosphorus (N/P) ratios suggest that phytoplankton production was potentially nitrogen-limited in all the surface waters of the Arabian Sea, with the greatest nitrogen limitation during the intermonsoon period.  相似文献   

9.
The effects of extreme atmospheric forcing on the export flux of particulate organic carbon (POC) in the warm oligotrophic nitrogen-limited northwest Pacific Ocean were examined in 2007 during the spring Asian dust storm period. Several strong northeast monsoon events (maximum sustained wind speeds approaching 16.7 m s? 1, and gusts up to 19.0 m s? 1) accompanied by dust storms occurred during a 1-month period. The cold stormy events decreased surface water temperature and induced strong wind-driven vertical mixing of the water column, resulting in nutrient entrainment into the mixed layer from subsurface waters. As a result, the export flux of POC ranged from 49 to 98 (average value = 71 ± 16) mg m? 2 day? 1, approximately 2–3 times greater than average values in other seasons. As dry and wet deposition of nitrogen attributable to Asian dust storm events does not account for the associated increases in POC stocks in this N-limited oligotrophic oceanic region, the enhancement of POC flux must have been caused by nutrient entrainment from subsurface waters because of the high winds accompanying the dust storm events.  相似文献   

10.
Three hydrographic surveys were conducted within the Galápagos Archipelago during 2005–2006. The surveys captured the surface properties (<80 m) near the extremes and midpoint of the annual cycle of the mean sea surface temperature (SST) and winds. A cooler SST occurs in boreal summer and fall as the southeast trades strengthen. Current data at 110°W show that this coincides with the Equatorial Undercurrent (EUC) becoming weaker and deeper below a strengthening westward South Equatorial Current (SEC). Opposite conditions are generally found in the spring. Meanwhile, the sea surface salinity (SSS) freshens in late winter/spring when the archipelago receives large rainfalls as the Intertropical Convergence Zone (ITCZ) shifts southward, or in late fall when receiving large influxes from the North Equatorial Countercurrent (NECC). As a result, Tropical Surface Waters (TSW) with salinity (S) <34 fill the archipelago from the late fall through early spring. The SSS becomes saltiest in late spring/early summer as the EUC strengthens, resulting in Equatorial Surface Waters (ESW), S>34, throughout the archipelago. Equatorial Surface Waters are present west of Isabela, where the EUC upwells as it interacts with the Galápagos platform. They also are found east of the archipelago in the cold tongue, which extends westward from South America, and therefore may be advected by the SEC into the archipelago. The upwelling west of Isabela creates a consistently shallow 20 °C isotherm (thermocline), which remains elevated across the archipelago. Linear extrapolation of the thermocline depth along the equator from 110 to 95°W gives a good approximation of the thermocline depth within the archipelago from 92 to 89°W.  相似文献   

11.
Dissolved organic carbon (DOC) data are presented from three meridional transects conducted in the North Atlantic as part of the US Climate Variability (CLIVAR) Repeat Hydrography program in 2003. The hydrographic sections covered a latitudinal range of 6°S to 63°N along longitudes 20°W (CLIVAR line A16), 52°W (A20) and 66°W (A22). Over 3700 individual measurements reveal unprecedented detail in the DOC distribution and systematic variations in the mesopelagic and bathypelagic zones of the North Atlantic basin. Latitudinal gradients in DOC concentrations combined with published estimates of ventilation rates for the main thermocline and North Atlantic Deep Water (NADW) indicate a net DOC export rate of 0.081 Pg C yr−1 from the epipelagic zone into the mesopelagic and bathypelagic zones. Model II regression and multiple linear regression models applied to pairwise measures of DOC and chlorofluorocarbon (CFC-12) ventilation age, retrieved from major water masses within the main thermocline and NADW, indicate decay rates for exported DOC ranging from 0.13 to 0.94 μmol kg−1 yr−1, with higher DOC concentrations driving higher rates. The contribution of DOC oxidation to oxygen consumption ranged from 5 to 29% while mineralization of sinking biogenic particles drove the balance of the apparent oxygen utilization.  相似文献   

12.
pH and alkalinity measurements from a coastal upwelling area located near 30°S (Coquimbo, Chile), are used to describe the short-term variations of CO2 air–sea exchanges over a period of one week in summer 1996. A 180 km ocean–coastal transect, together with two almost-synoptic grid surveys off Coquimbo covering approximate 2500 km2 each, showed that during and immediately after a 4 day long southwesterly wind event (24–28 January) a large area of cold surface water (≈14°C), highly supersaturated in CO2 (fCO2 up to 900 μatm), was located near the coast. Three days after the end of the event, the second grid survey showed that in most of the study area the surface temperature and pH had increased significantly (by 1–3°C and 0.05–0.2, respectively), and that the surface water was no longer supersaturated in CO2. The CO2-supersaturated water observed in the first grid survey was identified as upwelled subsurface equatorial water, a water mass with its core at about 200 m depth: the depth from which the water upwells is a major determinant of the surface water fCO2. Integrated C fluxes within a 20 km wide coastal strip (1900 km2) indicate a strong outgassing of CO2 from the ocean under upwelling conditions (Grid 1; 121 t C day-1), while the net C exchange was directed to the ocean during the relaxation period (Grid 2; 19 t C day-1). Estimates of CO2 fluxes in upwelling areas based on surface water fCO2 measurements must therefore take into account these short-term variations: reliance on longer-term averages and interpolation will lead to erroneous results.  相似文献   

13.
Diatoms, dinoflagellates, coccolithophores, nanoflagellates, picophytoplankton and procaryote algae (Synechococcus spp. and prochlorophytes) were quantified by microscopy and flow cytometry, and their biomass determined, at 12 stations along a 1600 km transect across the Arabian Sea at the end of the SW monsoon in September, and during the inter-monsoon period of November/December 1994. The transect spanned contrasting oceanic conditions that varied from seasonally eutrophic, upwelling waters through mesotrophic, downwelling waters to permanently oligotrophic, stratified waters. The overall diversity of diatoms, dinoflagellates and coccolithophores along the transect was not significantly different between the SW monsoon and inter-monsoon. However, diatoms showed greatest diversity during the SW monsoon and coccolithophores were most diverse during the inter-monsoon. Integrated phytoplankton standing stocks during the SW monsoon ranged from 3 to 9 g C m-2 in the upwelling eutrophic waters, from 3 to 5 g C m-2 in downwelling waters, and from 1 to 2 g C m-2 in oligotrophic waters. Similar phytoplankton standing stocks were found in oligotrophic waters during the inter-monsoon, but were ca. 40% lower compared to the SW monsoon in the more physically dynamic waters. Phytoplankton abundance and biomass was dominated by procaryote taxa. Synechococcus spp. were abundant (often >108 cells l-1) during both the SW monsoon and inter-monsoon, where the nitrate concentration was ⩾0.1 μ mol l-1, and often dominated the phytoplankton standing stocks. Prochlorophytes were restricted to oligotrophic stratified waters during the SW monsoon period but were found at all stations along the transect during the inter-monsoon, dominating the phytoplankton standing stocks (>40%) in the oligotrophic region during this period. Of the nano- and micro-phytoplankton, only diatoms contributed significantly to phytoplankton standing stocks, and then only in near-shore upwelling waters during the SW monsoon. There were significant changes in the temporal composition of the phytoplankton community. In nearshore waters a mixed community of diatoms and Synechococcus spp. dominated during the SW monsoon. This gave way to a community dominated by Synechococcus spp. in the intermonsoon. In the downwelling zone, a Synechococcus spp. dominated community was replaced by a mixed procaryote community of Synechococcus spp. and prochlorophytes. In the oligotrophic stratified waters, the mix of procaryote algae was replaced by one dominated by prochlorophytes alone.  相似文献   

14.
《Marine Chemistry》2007,103(1-2):30-45
The chemistry of dissolved Fe(III) was studied in the Scheldt estuary (The Netherlands). Two discrete size fractions of the dissolved bulk (< 0.2 μm and < 1 kDa) were considered at three salinities (S = 26, 10 and 0.3).Within the upper estuary, where fresh river water meets seawater, the dissolved Fe concentration decreases steeply with increasing salinity, for the fraction < 0.2 μm from 536 nM at S = 0.3 to 104 nM at S = 10 and for the fraction < 1 kDa from 102 nM to 36 nM Fe. Further downstream, in the middle and lower estuary, this decrease in the Fe concentration continues, but is far less pronounced. For all samples, the traditionally recognised dissolved strong organic Fe-binding ligand concentrations are lower than the dissolved Fe concentrations.Characteristics of dissolved Fe-binding ligands were determined by observing kinetic interactions with adsorptive cathodic stripping voltammetry. From these kinetic experiments we concluded that apart from the well-known strong Fe-binding organic ligands (L, logK = 19–22) also weak Fe-binding ligands (P) existed with an α value (binding potential = K · [P]) varying between 1011.1 and 1011.9. The presence of this relatively weak ligand explained the high concentrations of labile Fe present in both size fractions in the estuary. This weak ligand can retard or prevent a direct precipitation after an extra input of Fe.The dissociation rate constants of the weak ligand varied between 0.5 × 10 4 and 4.3 × 10 4 s 1. The rate constants of the strong organic ligand varied between kd = 1.5 × 10 3–17 × 10 2 s 1 and kf = 2.2 × 108–2.7 × 109 M 1 s 1. The dissociation rate constant of freshly amorphous Fe-hydroxide was found to be between 4.3 × 10 4 and 3.7 × 10 3 s 1, more labile or equal to the values found by Rose and Waite [Rose, A.L., Waite, T.D., 2003a. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol., 37, 3897–3903.] for freshly precipitated Fe in seawater.Kinetic rate constants of Fe with the ligand TAC (2-(2-Thiazolylazo)-p-cresol) were also determined. The formation rate constant of Fe(TAC)2 varied between 0.1 × 108 and 3.6 × 108 M 1 s 1, the dissociation rate constant between 0.2 × 10 5 and 17 × 10 5 s 1 for both S = 26 and S = 10. The conditional stability constant of Fe(TAC)2 (βFe(TAC)2′) varied between 22 and 23.4 for S = 10 and S = 26 more or less equal to that known from the literature (logβFe(TAC)2 = 22.4; [Croot, P.L., Johansson, M., 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis, 12, 565–576.]). However, at S = 0.3 the logβFe(TAC)2′ was 25.3, three orders of magnitude higher. Apparently the application of TAC to samples of low salinity can only be done when the correct βFe(TAC)2′ is known.  相似文献   

15.
The southeastern Arabian Sea (SEAS), located in the Indian Ocean warm pool, is a key-region of the regional climate system. It is suspected to play an important role in the dynamics of the Asian summer monsoon system. The present study reports the salient features derived from a newly harvested observational dataset consisting of repeated fortnightly XBT transects in the SEAS over the period 2002–2008. The fortnightly resolution of such a multi-year record duration is unprecedented in this part of the world ocean and provides a unique opportunity to examine the observed variability of the near-surface thermal structure over a wide spectrum, from intra-seasonal to interannual timescales. We find that most of the variability is trapped in the thermocline, taking the form of upwelling and downwelling motions of the thermal stratification. The seasonal variations are consistent with past studies and confirm the role of the monsoonal wind forcing through linear baroclinic waves (coastally-trapped Kelvin and planetary Rossby waves). Sub-seasonal variability takes the form of anomalous events lasting a few weeks to a few months and occurs at two preferred timescales: in the 30–110 day band, within the frequency domain of the Madden–Julian oscillation and in the 120–180 day band. While this sub-seasonal variability appears fairly barotropic in the offshore region, the sign of the anomaly in the upper thermocline is opposite to that in its lower part on many occasions along the coast. Our dataset also reveals relatively large interannual temperature variations of about 1 °C from 50 to 200 m depth that reflect a considerable year-to-year variability of the magnitude of both upwelling and downwelling events. This study clearly demonstrates the necessity for sustained long-term temperature measurements in the SEAS.  相似文献   

16.
Late Turonian, Coniacian and Santonian source rock samples from a recently drilled well (Tafaya Sondage No. 2; 2010) in the Tarfaya Basin were analyzed for quantity, quality, maturity and depositional environment of the organic matter (OM). To our knowledge such a thick sequence of organic matter-rich Turonian to Santonian source rocks was investigated in that great detail for the first time. Organic geochemical and organic petrological investigations were carried out on a large sample set from the 200 m thick sequence. In total 195 core samples were analyzed for total organic carbon (Corg), total inorganic carbon contents and total sulfur (TS) contents. Rock-Eval pyrolysis and vitrinite reflectance measurements were performed on 28 samples chosen on the basis of their Corg content. Non-aromatic hydrocarbons were analyzed on selected samples by way of gas chromatography–flame ionization detection (GC–FID) and GC–mass spectrometry (GC–MS). The organic matter-rich carbonates revealed a high source rock potential, representing type I kerogen and a good preservation of the organic matter, which is mainly of marine (phytoplankton) origin. HI values are high (400–900 mg/g Corg) and in a similar range as those described for more recent upwelling sediments along the continental slope of North Africa. TS/Corg ratios as well as pristane over phytane ratios indicate variable oxygen content during sediment deposition. All samples are clearly immature with respect to petroleum generation which is supported by maturity parameters such as vitrinite reflectance (0.3–0.4%), Tmax values (401–423 °C), production indices (S1/(S1 + S2) > 0.1) as well as maturity parameters based on ratios of specific steranes and hopanes.  相似文献   

17.
Phytoplankton fluorescence, temperature and salinity were measured from December through February using in situ instruments deployed at two locations in the southern Ross Sea, Antarctica during the austral summers of three consecutive years (2003–2004, 2004–2005, and 2005–2006) to assess the short-term, seasonal and interannual variations in phytoplankton biomass and oceanographic conditions. The seasonal climatologies of physical forcing variables were also determined from satellite measurements, and the data from the two sites compared to the 2000–2009 mean. In situ fluorometers were deployed at three depths at 77°S, 172.7°E and 77.5°S, 180°. Significant differences between the two sites were consistently observed, confirming the anticipated high level of spatial and temporal heterogeneity. Chlorophyll fluorescence was maximal in late December, and generally decreased rapidly to modest levels in January and February. However, during 1 year (2003–2004) a secondary bloom was found, with summer maxima being similar to those observed during spring. Fluorescence displayed a strong diel cycle, with strong quenching during periods of maximum irradiance. The magnitude of this reduction was large (the minimum average fluorescence was 25% of the daily mean) and decreased with depth. Fluorescence varied interannually, with the absolute levels and temporal patterns being different among years. The two sites had different temperature/salinity properties as measured at 24 m, and both variables changed with time. During 2004–2005 we were able to continuously measure the photosynthetic quantum efficiency of PSII (Fv/Fm) at 11 m, which revealed a minimum in December, and an increase in January, whereas the absolute fluorescence (Fo) decreased simultaneously. We suggest that this reflected a mixing event, whereby available irradiance increased, allowing a short period of growth in a more favorable optical environment. While substantial variations from the mean physical forcing were observed, the linkage of these physical variations with fluorescence was not always clear. Short-term (over 24-h) changes in fluorescence occurred, and were likely related to advective events. Wind events altered fluorescence in the surface layer, and these redistributed phytoplankton in the surface. The variability in chlorophyll fluorescence and physical forcing over a variety of scales in the Ross Sea provides insights into temporal–spatial coupling of phytoplankton.  相似文献   

18.
Measurements of 234Th/238U disequilibria and particle size-fractionated (1, 10, 20, 53, 70, 100 μm) organic C and 234Th were made to constrain estimates of the export flux of particulate organic C (POC) from the surface waters of the Ligurian, Tyrrhenian and Aegean Seas in March–June 2004. POC exported from the surface waters (75–100 m depth) averaged 9.2 mmol m−2 d−1 in the Ligurian and Tyrrhenian Seas (2.3±0.5–14.9±3.0 mmol m−2 d−1) and 0.9 mmol m−2 d−1 in the Aegean Sea. These results are comparable to previous measurements of 234Th-derived and sediment-trap POC fluxes from the upper 200 m in the Mediterranean Sea. Depth variations in the POC/234Th ratio suggest two possible controls. First, decreasing POC/234Th ratios with depth were attributed to preferential remineralization of organic C. Second, the occurrence of maxima or minima in the POC/234Th ratio near the DCM suggests influence by phytoplankton dynamics. To assess the accuracy of these data, the empirical 234Th-method was evaluated by quantifying the extent to which the 234Th-based estimate of POC flux, PPOC, deviates from the true flux, FPOC, defined as the p-ratio (p-ratio=PPOC/FPOC=STh/SPOC, where S=particle sinking rate). Estimates of the p-ratio made using Stokes’ Law and the particle size distributions of organic C and 234Th yield values ranging from 0.93–1.45. The proximity of the p-ratio to unity implies that differences in the sinking rates of POC- and 234Th-carrying particles did not bias 234Th-normalized POC fluxes by more than a factor of two.  相似文献   

19.
Data from the first systematic survey of inorganic carbon parameters on a global scale, the GEOSECS program, are compared with those collected during WOCE/JGOFS to study the changes in carbon and other geochemical properties, and anthropogenic CO2 increase in the Atlantic Ocean from the 1970s to the early 1990s. This first data-based estimate of CO2 increase over this period was accomplished by adjusting the GEOSECS data set to be consistent with recent high-quality carbon data. Multiple Linear Regression (MLR) and extended Multiple Linear Regression (eMLR) analyses to these carbon data are applied by regressing DIC with potential temperature, salinity, AOU, silica, and PO4 in three latitudinal regions for the western and eastern basins in the Atlantic Ocean. The results from MLR (and eMLR provided in parentheses) indicate that the mean anthropogenic CO2 uptake rate in the western basin is 0.70 (0.53) mol m?2 yr?1 for the region north of 15°N; 0.53 (0.36) mol m?2 yr?1 for the equatorial region between 15°N and 15°S; and 0.83 (0.35) mol m?2 yr?1 in the South Atlantic south of 15°S. For the eastern basin an estimate of 0.57 (0.45) mol m?2 yr?1 is obtained for the equatorial region, and 0.28 (0.34) mol m?2 yr?1 for the South Atlantic south of 15°S. The results of using eMLR are systematically lower than those from MLR method in the western basin. The anthropogenic CO2 increase is also estimated in the upper thermocline from salinity normalized DIC after correction for AOU along the isopycnal surfaces. For these depths the results are consistent with the CO2 uptake rates derived from both MLR and eMLR methods.  相似文献   

20.
In the southern Arabian Sea (between the Equator and 10°N), the shoaling of isotherms at subsurface levels (20 °C isotherm depth is located at ∼90 m) leads to cooling at 100 m by 2–3 °C relative to surrounding waters during the winter monsoon. The annual and interannual variations of this upwelling zone, which we call the Arabian Sea dome (ASD), are studied using results from an eddy-permitting ocean general circulation model in conjunction with hydrography and TOPEX/ERS altimeter data. The ASD first appears in the southeastern Arabian Sea during September–October, maturing during November–December to extend across the entire southern Arabian Sea (along ∼5°N). It begins to weaken in January and dissipates by March in the southwestern Arabian Sea. From the analysis of heat-budget balance terms and a pair of model control experiments, it is shown that the local Ekman upwelling induced by the positive wind-stress curl of the winter monsoon generates the ASD in the southeastern Arabian Sea. The ASD decays due to the weakening of the cyclonic curl of the wind and the westward penetration of warm water from the east (Southern Arabian Sea High). The interannual variation of the ASD is governed by variations in the Ekman upwelling induced by the cyclonic wind-stress curl. Associated with the unusual winds during 1994–1995 and 1997–1998 Indian Ocean dipole (IOD) periods, the ASD failed to develop. In the absence of the ASD during the IOD events, the 20 °C isotherm depth was 20–30 m deeper than normal in the southern Arabian Sea resulting in a temperature increase at 97 m of 4–5 °C. An implication is that the SST evolution in the southern Arabian Sea during the winter monsoon is primarily controlled by advective cooling: the shoaling of isotherms associated with the ASD leads to SST cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号