首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laterite occurs extensively over the crystalline and sedimentary rocks in the midland and lowland areas of south Kerala, India. Two lateritization cycles are identified in this area. Large, good-quality kaolin deposits, composed mostly of kaolinite, are characteristic of the sedimentary sequence in south Kerala. These deposits were formed on deposition of the weathering materials of the khondalites towards the first cycle of lateritization. After deposition and uplift of the sedimentary rocks, another lateritization cycle affected these, as well as the khondalites during pre-Quaternary times with the formation of a planation surface at 25–125 m above sea level having thick laterite profiles. The laterite profiles over the kaolin deposits show higher concentration of Fe-oxides (mostly in the form of hematite) and titania, compared to their concentration in the kaolins. Higher contents of Cr and Ni are also characteristic of the laterite over kaolin deposits. Recrystallization of the kaolinite, appearance of Al, Fe and Si amorphous phases in the kaolin clays and partial removal of Fe and Ti from them are attributed to the second lateritization cycle.  相似文献   

2.
This paper reports the results of precision structural-morphological study of kaolinite from clayey rocks taken in various areas of the Voronezh anteclise subjected to different stages of lithogenesis: primary kaolins of the weathering crust, proluvial-talus and lacustrine secondary kaolins, as well as lacustrine-swampy fireproof and deltaic-lagoonal refractory clays. The clayey material was transported over more than 300 km. The formation of the fireproof and refractory kaolin deposits in the Voronezh anteclise was related to the Devonian and Early Cretaceous stages of the geological evolution of the region. In terms of spatiotemporal and facies features, the studied genetic series of the kaolin clay deposits is unique. It was established that the sequential structural-morphological evolution o kaolinite in the considered deposits was caused by its mechanical disintegration during transport and redeposition. Interrelation between organic and mineral matters in the fireproof clays was revealed for the first time. Experimental studies of the behavior of kaolinite during sequential grinding and heating confirmed the main reasons for its natural degradation. The formation of virtually monomineral kaolin clays was provoked by the “flow-through” diagenesis, which is similar to weathering in trend. Evolution of mineral matter of the considered genetic series in kaolinite clay deposits was accompanied by the increase of δ18O values and their dispersion. Peculiarities identified in the behavior of kaolinite and related oxygen isotope characteristics of different-aged denudation and redeposition products of the Devonian weathering crust can play an indicator role in studying different stages of the lithogenesis of clayey rocks.  相似文献   

3.
Sedimentary kaolin deposits in the Lote 18 area (Santa Cruz Province, Patagonia, Argentina) have been mined since 1951. They constitute 30% of the country's production and are mainly used in the ceramic whiteware industry. The deposits belong to the Baqueró Formation (Lower Cretaceous) and unconfomably overlie either the ash-flow tuffs of the Chon-Aike Formation (Middle Jurassic), which are altered to kaolinite and minor illite, or the ash-fall tuffs of Bajo Grande Formation (Upper Jurassic-Lower Cretaceous), which are altered mainly to smectites. The presence of illite or smectite, as well as the kaolinite crystallinity, depends on the stratigraphic position of the kaolin horizons within the Lower Member of the Baqueró Formation and on the lithology of the underlying rocks. Kaolin beds composed of well-crystallized kaolinite at the base of the sequence overlaying Chon-Aike rocks are the purest. Kaolinite becomes less well cystallized with transport. Edge-to-face and swirl SEM textural patterns indicate the compaction of flocculated clays and clay movement during drainage and compaction. Mineralogical, petrological, and physico-structural evidence (i.e., form, extent, thickness) indicates that the kaolin deposits are sedimentary, formed by the transportation and deposition of previously formed kaolinite. Kaolin beds are ovoidal in plan and lenticular in profile, with thickness ranging from centimeters to 11 meters, and the culmination of fining-upward clastic sequences. Sedimentary facies analysis indicates that the kaolin deposits were formed in a fluvial environment from currents with a high suspended-load/bed-load ratio, as would result from deposition in ox-bow lakes.  相似文献   

4.
吴宇杰  陈从喜  袁峰 《地球学报》2021,42(5):628-640
中国高岭土矿产资源丰富,矿床类型齐全且分布广泛,是一种重要的战略性非金属矿产.前人对高岭土矿床研究、地质勘查和资源开发利用都做了大量工作,积累了丰富资料,但缺少对高岭土矿床成矿和时空分布规律系统性的分析.本文在前人研究和对全国现有高岭土矿床和地质勘查资料系统分析基础上,选取了有代表性且数据比较齐全的521个高岭土矿床,...  相似文献   

5.
The clay fractions of sedimentary kaolin deposits representing different ages (Carboniferous and Cretaceous), types (pisolitic flint and plastic), and localities (Sinai and Aswan) from Egypt were analyzed for their H and O isotopic compositions to examine the paleoclimate conditions during their formation. The δD values of the Carboniferous deposits in Sinai range between −67‰ and −88‰, while the values for the Cretaceous deposits in Sinai range between −59‰ and −75‰. The δ18O values of the Carboniferous deposits range from 17.9‰ to 19.4‰ and the values for the Cretaceous deposits range between 19.2‰ and 20.4‰. The relatively low δD and δ18O values of the Carboniferous deposit at the Abu Natash area (−67‰ and 17.9‰, respectively) compared to other Carboniferous deposits (averages of −83.3‰, and 18.8‰ for δD and δ18O, respectively) could be due to isotopic exchange between this deposit and the adjacent dolomite and/or the enclosed hydrothermally-formed Mn ores of the Carboniferous Um Bogma Formation. The δD and δ18O values of the Cretaceous pisolitic flint kaolin deposit from Aswan (averages of −65‰ and 20.3‰, respectively) and plastic kaolin from the same area (averages of −66‰ and 19.5‰, respectively) are almost identical. The differences in the δ18O values between the clay fractions of the pisolitic flint kaolin (20.3‰) and the previously analyzed bulk kaolin of the same deposit (average of 17.5‰) suggest a significant effect of non-clay minerals on the isotopic compositions of the kaolin deposits.The H and O isotopic compositions plot close to the kaolinite line that marks the isotopic composition of kaolinite in equilibrium with meteoric water at 20 °C. This indicates that the kaolinite from both the Carboniferous and Cretaceous deposits in Egypt formed by meteoric water weathering of the source rock(s). The δD and δ18O values also suggest that kaolinite of these deposits formed under warm-temperate to tropical conditions. The slight deviations of some samples from the kaolinite line suggest post-depositional modifications of the isotopic compositions of studied deposits probably due to the interaction between earlier-formed kaolinite and downward percolating meteoric water.The δD and δ18O values of the Cretaceous and Carboniferous deposits from all localities suggest that both deposits formed under similar climatic conditions due to the location of Egypt at almost the same distance from the equator either to the south during the Carboniferous or to the north during the Cretaceous.  相似文献   

6.
The intra- and epicontinental basins in north-east Africa (Egypt, Sudan) bear ample evidence of weathering processes repeatedly having contributed to the formation of mineral deposits throughout the Phanerozoic.The relict primary weathering mantle of Pan-African basement rocks consists of kaolinitic saprolite, laterite (in places bauxitic) and iron oxide crust. On the continent, the reaccumulation of eroded weathering-derived clay minerals (mainly kaolinite) occurred predominantly in fluvio-lacustrine environments, and floodplain and coastal plain deposits. Iron oxides, delivered from ferricretes, accumulated as oolitic ironstones in continental and marine sediments. Elements leached from weathering profiles accumulated in continental basins forming silcrete and alunite or in the marine environment contributing to the formation of attapulgite/saprolite and phosphorites.The Early Paleozoic Tawiga bauxitic laterite of northern Sudan gives a unique testimony of high latitude lateritic weathering under global greenhouse conditions. It formed in close spatial and temporal vicinity to the Late Ordovician glaciation in north Africa. The record of weathering products is essentially complete for the Late Cretaceous/Early Tertiary. From the continental sources in the south to the marine sinks in the north, an almost complete line of lateritic and laterite-derived deposits of bauxitic kaolin, kaolin, iron oxides and phosphates is well documented.  相似文献   

7.
[研究目的]本文主要对中国高岭土矿开展资源潜力定量评价,指导后期勘查找矿与开发.[研究方法]首先是对中国高岭土矿成矿规律进行研究,按地质成因中国高岭土矿可以分为3种类型:风化型、热液蚀变型和沉积型.然后对中国高岭土矿划分预测类型、总结成矿模式、归纳预测要素,最后对高岭土矿远景区进行划分并估算资源潜力.[研究结果]风化型...  相似文献   

8.
The clay fractions of saprolites from granites, basalt, and schists in Egypt were subjected to mineralogical and geochemical investigations to examine the effect of source rock on the composition of the saprolites and the possibilities of these saprolites as a source of the nearby sedimentary kaolin deposits. The clay fractions of the studied saprolites show mineralogical and geochemical variations. Saprolites from the granites consist of kaolinite, while saprolites from the basalts are composed entirely of smectite. Schists-derived saprolites are composed of kaolinite in some cases and of a mixture of kaolinite, illite, and chlorite in the other. Saprolite from the basalt is characterized by relatively higher contents of TiO2 and Ni compared to the saprolites from granites. Saprolites from granites have higher contents of Ba, Li, Pb, Sr, Th, Y, and Zr compared to those of the saprolites from the basalts and schists. Saprolites from different schists show variations in the distributions of many constituents, such as TiO2, Cr, Ni, Ba, Y, and Zr. Although chondrite-normalized rare earth elements (REE) patterns are characterized by relative enrichments in the light rare earth elements (LREE) compared to the heavy rare earth elements (HREE) in all saprolites, granitic saprolites show negative Eu anomalies, while saprolite from basalt has no Eu anomaly. REE patterns of the saprolites from schists exhibit slight positive Ce anomalies and slight to moderate negative Eu anomalies. Weathering of saprolites from the basalt and metasediments is classified as the bisiallitization type, while weathering of saprolite from the granite is allitization type. Saprolites from schists vary from the bisiallitization (Aswan and Abu Natash) and allitization (Khaboba) types. Saprolites from the Khaboba schist can be considered the possible source of the Carboniferous kaolin deposits in the Hasber and Khaboba areas of Sinai, based on the similarity in the mineralogy and geochemistry of major, trace, and REE between the saprolites and the deposits. On the other hand, Carboniferous sedimentary kaolin deposits in the Abu Natash area, as well as the Cretaceous kaolin deposits in all areas of Sinai, might have been derived from the nearby schist saprolites, based on the similarity in the mineralogy and geochemistry between the saprolites and the kaolin deposits. Granites from the Arabian-Nubian Shield (ANS) and East Sahara Craton (ESC) are the possible sources of the pisolitic and plastic kaolin deposits in the Kalabsha area (Aswan), as indicated by the similarity in the mineralogy and geochemistry of the granitic saprolites and the kaolin deposits.  相似文献   

9.
江西龙南花岗岩稀土风化壳中粘土矿物的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
本区燕山早期花岗岩发育的风化壳中的粘土矿物以高岭石和埃洛石(7Å)为主;蒙脱石、三水铝石及其它为新查明矿物。据粘土矿物组合特征,自风化剖面深部到地表分为三个带:含蒙脱石带,高岭石和埃洛石(7Å)带,含三水铝石带。本文探讨了矿物在风化过程中的生成演化顺序,并进行了热力学的解释。据各带粘土物质的阳离子交换量与稀土含量变化的不一致关系认为,稀土在C带中的富集是化学风化的结果,与粘土矿物组合无关。  相似文献   

10.
Many physico-chemical variables like rock-type, climate, topography and exposure age affect weathering environments. In the present study, an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering profiles in west coast of India, which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (<200 cm rainfall) are studied using X-ray diffraction technique. In the west coast, 1:1 clays (kaolinite) and Fe—Al oxides (gibbsite/goethite) are dominant clay minerals in the weathering profiles while 2:1 clay minerals are absent or found only in trace amounts. Weathering profiles in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite. Fe—Al oxides are either less or absent in clay fraction. The kaolinite—smectite interstratified mineral in Banasandra profiles are formed due to transformation of smectites to kaolinite, which is indicative of a humid paleoclimate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type. Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering. Mineral alteration reactions proceed through different pathways in water rich and water poor environments.  相似文献   

11.
为研究长江中下游红土剖面中粘土矿物的特征及其成因意义, 对安徽宣城红土剖面中粘土矿物进行深入、系统的X射线衍射分析.结果表明, 宣城剖面各土壤层中粘土矿物成分基本一致, 主要为蛭石、伊利石、高岭石, 以及粘土矿物过渡相. 由采自剖面上部样品的X射线衍射图可知, 经乙二醇饱和后7 ?衍射峰可分解为7.15、7.60和7.92 ?三部分, 表明除了高岭石(7.15 ?)外, 还存在高岭晶层含量分别为~80%和~95%的2种高岭-蒙脱石过渡相, 并以前者为主; 剖面下部样品在乙二醇饱和后, 7 ?衍射峰可分解为7.16、7.79和8.35 ?等3个衍射峰, 其中8.35 ?峰衍射强度很小, 表明除了高岭石外, 样品中存在高岭晶层含量为~90%和~43%的高岭-蒙脱石过渡相, 后者含量甚少.甲酰胺饱和结果表明, 高岭-蒙脱石混层粘土矿物相中高岭晶层为埃洛石相.加热试验的衍射图中10 ?衍射峰强度明显增强, 证实高岭相中含有一定数量的来源于绿泥石风化的蒙脱石间层; 而10 ?衍射峰的低角度一侧没有出现拖尾现象, 则指示高岭-蒙脱石混层矿物中的蒙脱石不是简单的羟基间层蒙脱石.此外, 红土剖面中还普遍出现过渡性粘土矿物伊利石-蒙脱石混层和伊利石-蛭石混层粘土矿物.大量过渡性粘土矿物相的出现, 从成土作用的角度上说明红土沉积物经历了沉积-风化、以及多期风化作用叠加, 而且在沉积-风化成土过程中, 气候环境变化于强烈化学风化的温暖、季节性干旱和强烈风化淋滤的温暖而更加潮湿的条件.蛭石-伊利石混层粘土矿物仅发育于红土剖面上部, 表明总体上剖面上部的化学风化程度低于剖面下部.   相似文献   

12.
The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The <2 μm kaolinite crystallites only correspond to 41.3–58.3% of the soft kaolin, and large booklets of 15–300 μm are common. The degree of structure order of kaolinite decreases towards the flint kaolin. The chemical composition of the soft kaolin is similar to the theoretical chemical composition of kaolinite, with low iron content, and can be well correlated to most kaolin deposits in the region. The distribution pattern of chemical elements from sandy to flint kaolin (lower unit) suggests a lateritic evolution and erosive truncation. This is quite distinct from the upper unit, which has a mineralogical and chemical pathway relating it to a complete immature lateritic profile. The geological evolution of the IRCC kaolin is similar to that of other deposits in the eastern Amazon region, being comprised of: parent rocks formed in an estuarine marine and fluvio-laccustrine environment during the early Cretaceous; establishment of mature lateritization with the formation of kaolin in the Eocene; marine transgression and regression – (Pirabas and Barreiras formation) with kaolin profile erosion and forward movement of deferruginization and flintization during the Miocene after partial mangrove covering; and immature lateritization – partial kaolin ferruginization during the Pleistocene.  相似文献   

13.
鄂尔多斯盆地东胜砂岩型高岭土矿特征及成因机制   总被引:1,自引:0,他引:1  
东胜砂岩型高岭土矿床位于鄂尔多斯盆地东北部,含矿层为延安组。经薄片鉴定、扫描电镜、X-衍射、全岩主要元素分析(XRF)以及稀土元素地球化学分析,对矿层白色砂岩与红色原岩的岩石地球化学特征进行了对比。结果表明,原岩为基质被铁质浸染的以碎屑片状高岭石和伊利石为主的红色砂岩,而矿层则为褪色的以粒度粗细不一的高岭石胶结为主的白色砂岩。矿层砂岩的分布与盆地北部油苗位置具有很好的对应关系。综合区域地质特征、岩石学、岩石化学以及天然气运散的信息,认为砂岩型高岭土矿层的形成是由于研究区以南气田中的上古生界天然气向北运移散失过程中,将红色原岩中的氧化铁胶结物还原成易于运移的Fe2+,从而使其褪色变白;同时酸性流体使长石溶蚀形成高岭石,后期的风化淋滤作用使砂岩中的高岭石含量进一步提高,进而形成目前较大规模的高岭土矿床。  相似文献   

14.
This paper reports the results of our recent studies and generalizes previously known data on the geology, mineralogy, geochemistry, and genesis of the Russia’s largest Latnenskoe refractory clay deposit. It is shown that conditions of its localization were defined by regional and local factors. The regional factors controlled the distribution of the clay raw material in the region, while the local factors were responsible for the genesis and composition of refractory clays of the Latnenskoe deposit. Our studies showed that the formation of refractory clays is not only related to terrigenous but also to authigenic processes of sedimentation. The terrigenous component of clays was formed by the erosion of kaolin weathering crusts of the Voronezh anteclise crystalline basement and Paleozoic sedimentary hydromica–kaolinite rocks. Authigenic processes were significantly contributed by organic matter, which determined the environmental pH and Eh parameters. It is established that the mineral matter of clays of the deposit is represented by three morphological modifications (crystalline, amorphous, and biomorphic), which were formed subsequently and (or) simultaneously and could be transformed into each other. Application of a complex of modern precision methods allowed us to reveal a previously unknown biomorphic modification of kaolinite, the major rock-forming mineral, as well as mixed-layer kaolinite-smectite in the clays. It is shown that the distribution of major and trace elements and the sulfur isotope composition in different technological types of clay depend mainly on the facies conditions of their formation. Technological properties of clay raw material are considered.  相似文献   

15.
Since the Carboniferous, tropical latitudes have been the site of formation of many economic coal deposits, most of which have a restricted range of mineralogical composition as a result of their depositional environment, climatic conditions, and diagenesis. Mineralogical and microscopic investigations of tropical peats from Tasek Bera, Peninsular Malaysia, were performed in order to better understand some of these factors controlling the nature, distribution and association of inorganic matter in peat-forming environments. Distribution and nature of the inorganic fraction of peat deposits give insight into the weathering conditions and detrital input into the mire system. Because the inorganic composition of peat deposits is determined by plant communities, height of water table, and climate, the results of the quantitative and qualitative analysis can be used to reconstruct palaeoclimatic conditions.Tasek Bera is a peat-accumulating basin in humid tropical Malaysia with organic deposits of low- to high-ash yield and thus representative of many ancient peat-forming environments. Clay minerals dominate the mineralogical composition of the peat and organic-rich sediments, while quartz and clays dominate the underlying siliciclastic deposits. Kaolinite is the most abundant clay mineral in the organic deposits with minor amounts of illite and vermiculite. Particle size analyses indicate that >50% of the inorganic detrital fraction is <2 μm. Most detrital quartz grains range in size from fine silt to fine sand. The fine sand fraction accounts for a maximum of 5 wt.% of the inorganic constituents. In addition, abundant biogenic and non-biogenic, Al- and Si-rich amorphous matter occur. In the ombrotrophic (low-nutrient) environment, biogenic inorganic material contributes up to >75% of the ash constituents. As a consequence, the vegetational communities make an important contribution to the inorganic and overall ash composition of peats and coals. The ash content of the often inundated peat consists on average of 10% opaline silica from diatoms and sponge spicules, while the ash of the top deposits may have up to 50% biogenic silica. Hence, Al- and Si-hydroxides and the opaline silica from diatoms and sponges represent a large repository of Al and Si, which may form the basis of mineral transformation, neoformation and alteration processes during coalification of the peat deposits. As a result, most coal deposits from paleotropical environments are anticipated to have little to no biogenic inorganic material but high amounts of secondary clays, such as kaolinite (detrital kaolinite, resilisified kaolinite, or desilisified gibbsite) or illite, and various amounts of detrital and authigenetic quartz.  相似文献   

16.
The kaolin deposits of the Amazon region of Brazil are of lateritic origin, modified by subsequent reduced lacustrine and/or swamp environment. They are contemporaneous with lateritic bauxites found in the same region, all formed from aluminium silicate rocks. These are principally sedimentary rocks from the Cretaceous period (Itapecuru and Alter do Chão), but also include metamorphic and felsic volcanic rocks. After erosion of the upper part of these profiles they became locally a substratum for swampy and/or lacustrine environments mostly developed over the clayey saprolitic horizon where kaolin occurs. The saprolitic horizon is made up mainly of iron-mottled kaolinite which has been subject to an intense deferrification, which has increased the kaolin brightness and thickness. The kaolins are basically made up of well-crystallized kaolinite, quartz, sometimes illite-muscovite, anatase and hematite. In certain locations, crandallite-goyazite is also present. The deposits studied differ from each other in the mineral content levels, concentration of principal elements and in trace element distribution. The greatest quantity of quartz and, consequently SiO2, is intrinsically related to the type of parent rock. Small sedimentary deposits occur in alluvial flood plains located not very far from the lateritic source.  相似文献   

17.
Kaolinite claystones that are similar in structure, texture and composition to the kaolin tonsteins of Western Europe, and to some of the flint clays of North America, are associated with the Wongawilli Seam in the southern part of the Sydney Basin, where they form thin persistent bands within the coal and somewhat thicker deposits immediately overlying the seam. The thin bands within the coal are fine grained and consist of brecciated to pelletal clasts composed of well‐ordered kaolinite set in a matrix of similar composition. The thicker deposits overlying the seam are much coarser grained and appear restricted in occurrence to the basin margins. They contain a predominance of oolites with kaolinite clasts bonded by a relatively sparse matrix and in places, remarkable ‘outgrowths’ of vermicular kaolinite. The origin of the deposits is discussed, and it is concluded that most of the unusual features of these claystones can be ascribed to a fluvial environment.  相似文献   

18.
The plagioclase of the kaolinised granite of Tirschenreuth is decomposed quantitatively and the biotite almost quantitatively, on the contrary potassium feldspar and mucovite of the parent rock remained unaffected by kaolinisation. The quantity of produced kaolinite is equivalent to the quantity of decomposed plagioclase and biotite. The rare elements Pb, Cu, Cr, Ni, P, and Ti from the kaolinised minerals are adsorbed quantitatively by the kaolin. All other elements are diminished, no element has been added to the kaolin from other sources than from parent rock material. The selective decomposition of plagioclase and biotite in the kaolin-feldspar deposit of Tirschenreuth and the association of rare elements in the kaolin are explainable by weathering processes only. Kaolins from Hirschau-Sehnaittenbach are characterised by extremely high concentrations of the rare elements Ba, Sr, Pb, Cu, and P. The association of rare elements of the kaolin has been originated from the decomposed potassium feldspar of the kaolinised arcoses. The rare elements Pb, Cu, Cr, and P are adsorbed quantitatively by the kaolin. The other elements are diminished, Ba and Sr inclusive and in spite of their high absolute concentrations. The composition of the arcoses of Hirschau-Schnaittenbach prior to kaolinisation is calculated to 56% of quartz and 44% of potassium feldspar by means of the quantities of the elements Pb and Cu analysed in the feldspar and in the kaolin. The kaolin of Hirschau-Schnaittenbach has originated by weathering of the potassium feldspar of the Triassic arcoses. The kaolinisation is of Triassic age because kaolins of the Hirschau-Schnaittenbach type were redeposited near Ehenfeld in the Cenomanian. Kaolin deposits of hydrothermal origin are characterised by a zonal structure and are associated by ores. They are different in geological behaviour and mineral association from kaolin deposits which originated by weathering of feldspathic rocks like the deposits of Tirschenreuth and Hirschau-Schnaittenbach (Upper Palatinate, Bavaria).  相似文献   

19.
Tropical chemical weathering produces extensive lateritization and formation of deep weathering profiles. Both processes are fundamental to landscape evolution and slope instability. The Aburrá Valley of the northern Colombian Andes is characterized by tropical conditions. The valley slopes are mostly covered by hillslope deposits originating from four basement rock suites which comprise contrasting granitoid, volcanic–sedimentary, ophiolitic, and metamorphic sources, respectively. Tropical chemical weathering of the Aburrá hillslope deposits and their respective bedrock were examined using X-ray fluorescence and X-ray diffraction analysis, to document and quantify their chemical weathering profiles, compositions, and mineralogical properties. The Chemical Index of Alteration (CIA), loss on ignition (LOI), and the Mobiles index (Imob) were used to quantify the degree of weathering of hillslope deposits and bedrock source. Weathering trends were analyzed using A–CN–K and A–CNK–FM diagrams. The material mantling the slopes in the Aburrá Valley records an intense weathering history. Chemical weathering is characterized by increased development of clay minerals (kaolinite, halloysite) and iron and aluminum sesquioxides. Lateritization characterizes the final stage of the weathering profiles. Concentrations of CaO, Na2O, K2O decrease markedly in the weathering products compared to the fresh bedrock source, whereas concentrations of Al2O3, Fe2O3, and MgO increase significantly. CIA ratios of matrix slope deposits derived from all four sources near 100, whereas those of boulder slope deposits and saprolites are lower, but exceed source rock values. Different A–CN–K weathering paths are evident for each lithotype, validating the correlation established between the hillslope deposits and their various parents. Chemical weathering indices in some samples are strongly influenced by the presence of sesquioxides, as reflected by high LOI, anomalously low CIA, and varying enrichment trends on the A–CNK–FM diagrams. Consequently, different chemical indices based on different criteria need to be combined to obtain best results, as illustrated here by the combination of LOI, CIA, and Imob. The overall results suggest that tropical conditions have dominated for a long time in the northern Colombian Andes, leading to uniformly high weathering indices in matrix slope deposits irrespective of parent lithotype. Prolonged warm and humid conditions could thus be responsible for the weathering and remobilization of extensive old hillslope deposits during the Quaternary. However, in addition to the influence of climatic factors, tectonism has also undoubtedly influenced slope evolution in the Aburrá Valley.  相似文献   

20.
In the forest of Enkheim near the city of Frankfurt, the depositional sequence of a river Main floodplain sediment was analyzed with regard to the elemental composition of its sediment-facies using XRD- and XRF-techniques. The study includes: residual minerals (mainly Zr and Ti species, which are extremely resistant to weathering), detrital minerals (quartz, K-feldspars, plagioclases), secondary minerals (mainly clay minerals such as Illitehydrous mica, kaolinite, vermiculite, chlorite, smectite and mixed-layer clays) and precipitated minerals (mainly calcite). The processes of weathering are defined in terms of buffer ranges (pH-Eh stability fields). The impact of the acid weathering front on the upper part of the sedimentary sequence was established by the analyses of the mechanisms of dissolution, transport and sorption of selected constituents (major cations; heavy metals) of which their eco-availability is of importance when measures of environmental protection have to be taken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号