共查询到20条相似文献,搜索用时 14 毫秒
2.
Carbon and oxygen isotope analyses were made of representative samples of calcite and quartz from the carbonate deposits in the Tolfa Mountains mining district. Measurements were also made of hydrogen isotope compositions, filling temperatures and salinities of fluid inclusions in these minerals. There are three stages of mineralization at Tolfa. In stage I, characterized by calc-silicate hornfels, the carbonates have relatively high 18O values of 14.5 to 21.6 suggesting a rather low water/rock ratio. 13C values of –0.3 to 2.1 indicate that appreciable decarbonation or introduction of deep-seated carbon did not occur. Stage II is marked by phanerocrystalline carbonates; 18O values of 13.1 to 20.0 and 13C values of 0.7 to 5.0 identify them as hydrothermal veins rather than marbles. D values of –56 to –50 for inclusion fluids suggest a possible magmatic component to the hydrothermal fluid. Filling temperatures of coarse-grained samples of Calcite II are 309° to 362° C with a salinity range of 5.3 to 7.1 weight percent NaCl. Calculated 18O values of 11–12 for these fluids are again indicative of low water/rock ratios. The sparry calcites of stage III have 18O and 13C values of 8.1 to 12.9 and –1.7 to 3.2, respectively. D values of inclusion fluids are –40 to –33, clearly heavier than in earlier stages and similar to values of modern local ground waters. A salinity measurement of <0.1 weight percent NaCl in a sample of Calcite III is compatible with a relatively unaltered ground water origin for this fluid. Precipitation of the sparry calcite took place at much lower temperatures, around 160° C. For quartz, 18O values of 9.3 to 12.4 and D values for inclusions of –53 to –28 are consistent with its late occurrence and paragenetic link with associated carbonates. 相似文献
3.
Mo mineralization within the Galway Granite at Mace Head and Murvey, Connemara, western Ireland, has many features of classic porphyry Mo deposits including a chemically evolved I-type granite host, associated K- and Si-rich alteration, quartz vein(Mace Head) and granite-hosted (Murvey) molybdenite, chalcopyrite, pyrite and magnetite mineralization and a gangue assemblage which includes quartz, muscovite and K-feldspar. Most fluid inclusions in quartz veins homogenize in the range 100–350°C and have a salinity of 1–13 eq. wt.% NaCl. They display Th-salinity covariation consistent with a hypothesis of dilution of magmatic water by influx of meteoric water. CO 2-bearing inclusions in an intensely mineralized vein at Mace Head provide an estimated minimum trapping temperature and pressure for the mineralizing fluid of 355°C and 1.2 kb and are interpreted to represent a H 2O-CO 2 fluid, weakly enriched in Mo, produced in a magma chamber by decompression-activated unmixing from a dense Mo-bearing NaCl-H 2O-CO 2 fluid. 34S values of most sulphides range from c. 0 at Murvey to 3–4 at Mace Head and are consistent with a magmatic origin. Most quartz vein samples have 18O of 9–10.3 and were precipitated from a hydrothermal fluid with 18O of 4.6–6.7. Some have 18O of 6–7 and reflect introduction of meteoric water along vein margins. Quartz-muscovite oxygen isotope geothermometry combined with fluid inclusion data indicate precipitation of mineralized veins in the temperature range 360–450°C and between 1 and 2 kb. Whole rock granite samples display a clear 18O-D trend towards the composition of Connemara meteoric waters. The mineralization is interpreted as having been produced by highlyfractionated granite magma; meteoric water interaction postdates the main mineralizing event. The differences between the Mace Head and Murvey mineralizations reflect trapping of migrating mineralizing fluid in structural traps at Mace Head and precipitation of mineralization in the granite itself at Murvey. 相似文献
4.
Fluid inclusions found trapped in speleothems (cave deposited travertine) are interpreted as samples of seepage water from which enclosing calcium carbonate was deposited. The inclusions are assumed to have preserved their D/H ratios since the time of deposition. Initial 18O/ 16O ratios can be inferred from δD because rain- and snow-derived seepage waters fall on the meteoric water line ( δD = 8 δ18O + 10). Estimates of temperature of deposition of the carbonate can be calculated from inclusion D/H ratios and δ18O of enclosing calcite in Pleistocene speleothems. For most speleothems investigated (0–200,000 yr old) δ18O of calcite appears to have decreased with increasing temperature of deposition indicating that the dominant cause of climate-dependent change in δ18O of calcite was the change in Kcw, the isotope fractionation equilibrium constant, with temperature; δ18O of meteoric precipitation generally increased with increasing temperature, but not sufficiently to compensate for the decrease in Kcw. 相似文献
5.
The Brandberg West region of NW Namibia is dominated by poly-deformed turbidites and carbonate rocks of the Neoproterozoic Damara Supergoup, which have been regionally metamorphosed to greenschist facies and thermally metamorphosed up to mid-amphibolite facies by Neoproterozoic granite plutons. The meta-sedimentary rocks host Damaran-age hydrothermal quartz vein-hosted Sn–W mineralization at Brandberg West and numerous nearby smaller deposits. Fluid inclusion microthermometric studies of the vein quartz suggests that the ore-forming fluids at the Brandberg West mine were CO 2-bearing aqueous fluids represented by the NaCl–CaCl 2–H 2O–CO 2 system with moderate salinity (mean=8.6 wt% NaCl equivalent).Temperatures determined using oxygen isotope thermometry are 415–521°C (quartz–muscovite), 392–447°C (quartz–cassiterite), and 444–490°C (quartz–hematite). At Brandberg West, the oxygen isotope ratios of quartz veins and siliciclastic host rocks in the mineralized area are lower than those in the rocks and veins of the surrounding areas suggesting that pervasive fluid–rock interaction occurred during mineralization. The O- and H-isotope data of quartz–muscovite veins and fluid inclusions indicate that the ore fluids were dominantly of magmatic origin, implying that mineralization occurred above a shallow granite pluton. Simple mass balance calculations suggest water/rock ratios of 1.88 (closed system) and 1.01 (open system). The CO 2 component of the fluid inclusions had similar δ
13C to the carbonate rocks intercalated with the turbidites. It is most likely that mineralization at Brandberg West was caused by a combination of an impermeable marble barrier and interaction of the fluids with the marble. The minor deposits in the area have quartz veins with higher δ
18O values, which is consistent with these deposits being similar geological environments exposed at higher erosion levels. 相似文献
6.
We assess tsunami hazards in San Diego Bay, California, using newly identified offshore tsunami sources and recently available
high resolution bathymetric/topographic data. Using MOST (Titov and Synolakis, J Waterways Port Coastal Ocean Eng ASCE 124(4):57–171,
1998), we simulate locally, regionally and distant-generated tsunamis. Local tsunami source models use more realistic fault
and landslide data than previous efforts. With the exception of the Alaska-Aleutian Trench, modeling results suggest that
local sources are responsible for the largest waves within the San Diego Bay and Mission Bay. Because San Diego Bay is relatively
well protected by North Island and the Silver Strand, the wave heights predicted are consistently smaller inside the harbor
than outside. However, historical accounts, recent tsunamis and our predictions show that San Diego Bay is vulnerable to strong
tsunami induced currents. More specifically, large currents are expected inside the harbor for various distant and local tsunami
sources with estimated flow velocities exceeding 100 cm/s. Such currents have been damaging to harbor facilities, such as
wharves and piers, and may cause boats to break from moorings and ram into adjacent harbor structures, as observed in recent
historic tsunamis. More recently, following the M
w
8.8 February 27, 2010 Chile earthquake, tsunami-currents damaged docks/piers in Shelter Island confirming our findings. We
note that the first generation of inundation maps in use in San Diego County by emergency management was based on much larger
“worst case but realistic scenarios” (Synolakis et al. 2002a), which reflected the understanding of offshore hazards pervasive ten years ago. Large inundation and overland flow depths
were observed primarily in local tsunami source simulations. In particular, locally induced tsunamis appear capable to overtop
the Silver Strand. The results suggest that further work needs to be carried out with respect to local tsunami sources as
they seem to have worse impact in the San Diego region than previously thought but probably low probability of occurrence.
We also predict that a coastal community can be devastated simultaneously by large waves inundating shores and large currents
in locations with small flow depths. 相似文献
7.
湖北郧西地区(鄂西北)发育有一系列锑矿床,但这些锑矿床的成因仍存在较大争议。为了准确限定该区域锑矿床的成因类型,本次研究以高桥坡和王家沟锑矿床为研究对象,在详细的野外地质调查和室内显微镜观察基础上,开展了系统的流体包裹体和原位S同位素研究。研究表明高桥坡锑矿床的成矿阶段可划分为:Ⅰ石英-硫化物阶段,此阶段为主成矿阶段,硫化物以黄铁矿和辉锑矿为主;Ⅱ石英-方解石-硫化物阶段;Ⅲ方解石-硫化物阶段。王家沟锑矿床的成矿阶段可划分为:Ⅰ石英-黄铁矿-闪锌矿阶段;Ⅱ石英-辉锑矿阶段,此阶段为主成矿阶段;Ⅲ石英-黄铁矿阶段。两个矿床各期次包裹体均以富液的气液两相包裹体为主。高桥坡矿床从早到晚,成矿流体温度逐渐降低,主成矿阶段成矿流体温度为160~260℃,流体盐度一般较低( w(NaCleq)为2%~4%)。王家沟锑矿床主成矿阶段成矿流体温度为170~310℃,流体盐度较低, w(NaCleq)约为0.35%~4.8%。高桥坡锑矿床的δ 34S值从Ⅰ阶段(7.2‰~12.4‰)到Ⅱ阶段(-3.4‰~2.5‰),再到Ⅲ阶段(-1.9‰~2.5‰)逐渐降低;王家沟锑矿床的δ 34S值变化趋势与高桥坡相似,由Ⅰ阶段(7.4‰~10.5‰),到Ⅱ阶段(2.5‰~10.4‰),再到Ⅲ阶段(-3.7‰~0.8‰)逐渐降低。结合区域内矿床地质、地球化学特征,笔者认为高桥坡和王家沟锑矿可能为浅成热液矿床。浅部流体循环到深部并富集成矿物质,随后循环至浅部,随着成矿流体温度下降,辉锑矿沉淀,形成了高桥坡和王家沟锑矿床。 相似文献
8.
This paper deals with barite from stratiform, karst, and vein deposits hosted within Lower Paleozoic rocks of the Iglesiente-Sulcis mining district in southwestern Sardinia. For comparison sulfates from mine waters are studied. Stratiform barite displays 34S=28.8–32.1, 18O=12.7–15.6, and 87Sr/ 86Sr=0.7087, in keeping with an essentially Cambrian marine origin of both sulfate and strontium. Epigenetic barite from post-Hercynian karst and vein deposits is indistinguishable for both sulfur and oxygen isotopes with 34S=15.3–26.4 and 18O=6.6–12.5; 87Sr/ 86Sr ratios vary 0.7094–0.7140. These results and the microthermometric and salinity data from fluid inclusions concur in suggesting that barite formed at the site of mineralization by oxidation of reduced sulfur from Cambrian-Ordovician sulfide ores in warm, sometimes hot solutions consisting of dilute water and saline brine with different 18O values. The relative proportion of the two types of water may have largely varied within a given deposit during the mineralization. In the karst barite Sr was essentially provided by carbonate host rocks, whereas both carbonate and Lower Paleozoic shale host rocks should have been important sources for Sr of the vein barite. Finally, 34S data of dissolved sulfate provide further support for the mixed seawater-meteoric water composition of mine waters from the Iglesiente area. 相似文献
9.
The Pojeonri Cu quartz veins occur in the north-western portion of the Hwanggangri Metallogenic Province and consist of two parallel massive quartz veins that fill fractures oriented NW and NE along fault zones in Paleozoic metasedimentary and sedimentary rocks of the Ogcheon and Taebaeg belts. Based on the mineralogy and paragenesis of the veins, only one mineralization episode has been recognized. The ore minerals are mainly chalcopyrite, pyrrhotite, and pyrite with minor arsenopyrite, sphalerite, galena and oxides of those base metal minerals. 相似文献
11.
The Sorkhe-Dizaj orebody is located 32 km southeast of Zanjan within the Tarom subzone of the Alborz-Azarbaijan structural zone. It is hosted mainly in quartz monzonite-monzodiorite and, to a lesser extent, in volcanoclastic rocks. Mineralization occurs in the form of stockwork and veins, comprising predominantly magnetite and actinolite, with minor pyrite and chalcopyrite. Two generations of magnetite and apatite are inferred: the first as disseminations in the host rock and the second mainly as an alteration product of actinolite, secondary K-feldspar, silica, sericite, chlorite and epidote. Fluid inclusion studies were carried out on second-generation apatite, and late-stage quartz to understand the geochemical evolution of the ore-bearing fluids. Fluid inclusions are of three types, i.e. primary, secondary, and pseudo-secondary. These inclusions are liquid or vapour single-phase, two-phase rich in liquid or vapour, and three-phase. Homogenization temperatures of second-generation apatite are inferred to be between 209°C and 520°C (mostly between 290°C and 320°C), indicating salinities of 9.08–21.61 wt.% NaCl equiv. At 342°C, the δ 18O values range from 9‰ to 11.32‰ for the second-generation magnetite associated with coeval apatite. Fluid inclusions in the late-stage quartz veins are inferred to have homogenized between 186°C and 263°C, with δ 18O values ranging between 2.5‰ and 7.4‰ at 220°C. Oxygen isotopes in the late-stage carbonate veins have values of 3.28–6.14‰ at 100°C. These data in the late-stage veins imply introduction of a cooler, less saline, isotopically depleted fluid, probably meteoric water. Field observations, mineral parageneses, and fluid inclusion?+?oxygen isotope data suggest that the magnetite-apatite veins formed from a predominantly magmatic-derived fluid. Introduction of cooler meteoric water in the final stage of mineralization reduced δ 18O values, facilitating precipitation of sulphides, quartz, and carbonate veins. 相似文献
12.
对河南嵩县祁雨沟地区角砾岩型金矿床和蚀变岩型金矿床稳定同位素研究表明,两类矿床具有同一成矿流体来源-岩浆水;在早期-主期成矿阶段成矿流体以岩浆水为主,晚期矿化流体加入了相当数量的大气水。铅同位素组成表明金矿床的成矿物质与区内钙碱性花岗岩成岩皆主要来源自上地幔,混合铅的存在指示了上地壳地矿物质加入岩浆热液中,参与了金床床的成矿作用。 相似文献
13.
Fluid inclusions in granite quartz and three generations of veins indicate that three fluids have affected the Caledonian
Galway Granite. These fluids were examined by petrography, microthermometry, chlorite thermometry, fluid chemistry and stable
isotope studies. The earliest fluid was a H 2O-CO 2-NaCl fluid of moderate salinity (4–10 wt% NaCl eq.) that deposited late-magmatic molybdenite mineralised quartz veins (V 1) and formed the earliest secondary inclusions in granite quartz. This fluid is more abundant in the west of the batholith,
corresponding to a decrease in emplacement depth. Within veins, and to the east, this fluid was trapped homogeneously, but
in granite quartz in the west it unmixed at 305–390 °C and 0.7–1.8 kbar. Homogeneous quartz δ 18O across the batholith (9.5 ± 0.4‰ n = 12) suggests V 1 precipitation at high temperatures (perhaps 600 °C) and pressures (1–3 kbar) from magmatic fluids. Microthermometric data
for V 1 indicate lower temperatures, suggesting inclusion volumes re-equilibrated during cooling. The second fluid was a H 2O-NaCl-KCl, low-moderate salinity (0–10 wt% NaCl eq.), moderate temperature (270–340 °C), high δD (−18 ± 2‰), low δ 18O (0.5–2.0‰) fluid of meteoric origin. This fluid penetrated the batholith via quartz veins (V 2) which infill faults active during post-consolidation uplift of the batholith. It forms the most common inclusion type in
granite quartz throughout the batholith and is responsible for widespread retrograde alteration involving chloritization of
biotite and hornblende, sericitization and saussuritization of plagioclase, and reddening of K-feldspar. The salinity was
generated by fluid-rock interactions within the granite. Within granite quartz this fluid was trapped at 0.5–2.3 kbar, having
become overpressured. This fluid probably infiltrated the Granite in a meteoric-convection system during cooling after intrusion,
but a later age cannot be ruled out. The final fluid to enter the Granite and its host rocks was a H 2O-NaCl-CaCl 2-KCl fluid with variable salinity (8–28 wt% NaCl eq.), temperature (125–205 °C), δD (−17 to −45‰), δ 18O (−3 to + 1.2‰), δ 13C CO2 (−19 to 0‰) and δ 34S sulphate (13–23‰) that deposited veins containing quartz, fluorite, calcite, barite, galena, chalcopyrite sphalerite and pyrite (V 3). Correlations of salinity, temperature, δD and δ 18O are interpreted as the result of mixing of two fluid end-members, one a high-δD (−17 to −8‰), moderate-δ 18O (1.2–2.5‰), high-δ 13C CO2 (> −4‰), low-δ 34S sulphate (13‰), high-temperature (205–230 °C), moderate-salinity (8–12 wt% NaCl eq.) fluid, the other a low-δD (−61 to −45‰), low-δ 18O (−5.4 to −3‰), low-δ 13C (<−10‰), high-δ 34S sulphate (20–23‰) low-temperature (80–125 °C), high-salinity (21–28 wt% NaCl eq.) fluid. Geochronological evidence suggests V 3 veins are late Triassic; the high-δD end-member is interpreted as a contemporaneous surface fluid, probably mixed meteoric
water and evaporated seawater and/or dissolved evaporites, whereas the low-δD end-member is interpreted as a basinal brine
derived from the adjacent Carboniferous sequence. This study demonstrates that the Galway Granite was a locus for repeated
fluid events for a variety of reasons; from expulsion of magmatic fluids during the final stages of crystallisation, through
a meteoric convection system, probably driven by waning magmatic heat, to much later mineralisation, concentrated in its vicinity
due to thermal, tectonic and compositional properties of granite batholiths which encourage mineralisation long after magmatic
heat has abated.
Received: 3 April 1996 / Accepted: 5 May 1997 相似文献
15.
The El Cobre deposit is located in eastern Cuba within the volcanosedimentary sequence of the Sierra Maestra Paleogene arc.
The deposit is hosted by tholeiitic basalts, andesites and tuffs and comprises thick stratiform barite and anhydrite bodies,
three stratabound disseminated up to massive sulphide bodies produced by silicification and sulphidation of limestones or
sulphates, an anhydrite stockwork and a siliceous stockwork, grading downwards to quartz veins. Sulphides are mainly pyrite,
chalcopyrite and sphalerite; gold occurs in the stratabound ores. Fluid inclusions measured in sphalerite, quartz, anhydrite
and calcite show salinities between 2.3 and 5.7 wt% NaCl eq. and homogenisation temperatures between 177 and 300°C. Sulphides
from the stratabound mineralisation display δ
34S values of 0‰ to +6.0‰, whilst those from the feeder zone lie between −1.4‰ and +7.3‰. Sulphides show an intra-grain sulphur
isotope zonation of about 2‰; usually, δ
34S values increase towards the rims. Sulphate sulphur has δ
34S in the range of +17‰ to +21‰, except two samples with values of +5.9‰ and +7.7‰. Sulphur isotope data indicate that the
thermochemical reduction of sulphate from a hydrothermal fluid of seawater origin was the main source of sulphide sulphur
and that most of the sulphates precipitated by heating of seawater. The structure of the deposit, mineralogy, fluid inclusion
and isotope data suggest that the deposit formed from seawater-derived fluids with probably minor supply of magmatic fluids. 相似文献
16.
18O, D, and H 2O + contents were measured for whole-rock specimens of granitoid rocks from 131 localitics in California and southwestern Oregon. With 41 new determinations in the Klamath Mountains and Sierra Nevada, initial strontium isotope ratios are known for 104 of these samples. Large variations in
18O (5.5 to 12.4), D (–130 to –31), water contents (0.14 to 2.23 weight percent) and initial strontium isotope ratios (0.7028 to 0.7095) suggest a variety of source materials and identify rocks modified by secondary processes. Regular patterns of variation in each isotopic ratio exist over large geographical regions, but correlations between the ratios are generally absent except in restricted areas. For example, the regular decrease in D values from west to east in the Sierra Nevada batholith is not correlative with a quite complex pattern of
18O values, implying that different processes were responsible for the isotopic variations in these two elements. In marked contrast to a good correlation between ( 87Sr/ 86Sr) o and
18O observed in the Peninsular Ranges batholith to the south, such correlations are lacking except in a few areas. D values, on the other hand, correlate well with rock types, chemistry, and ( 87Sr/ 86Sr) o except in the Coast Ranges where few of the isotopic signatures are primary. The uniformly low D values of samples from the Mojave Desert indicate that meteoric water contributed much of the hydrogen to the rocks in that area. Even so, the
18O values and 18O fractionations between quartz and feldspar are normal in these same rocks.This reconnaissance study has identified regularities in geochemical parameters over enormous geographical regions. These patterns are not well understood but merit more detailed examination because they contain information critical to our understanding of the development of granitoid batholiths. 相似文献
18.
Analyses of 230 Franciscan rock and mineral samples, including the San Luis Obispo ophiolite, show that metamorphism produces no change in the δ 18O of the graywackes (+11 to +14), but that igneous rocks become enriched in 18O by 2–6% and the cherts depleted by 5–10%. The shales are of two types, a high- 18O type (+16 to +20) associated with chert and a low- 18O type isotopically and mineralogically similar to the graywackes. The vein quartz ( δ = + 15 to + 20) is invariably richer in 18O than the host rock quartz and in most of the rocks the δ 18O of the clastic quartz is similar to the δ 18O of the whole rock. Mineral assemblages are typically not in isotopic equilibrium. Although the δ 18O values are very uniform (+13 to +16). the δ 13C of vein aragonite and calcite is widely variable (0 to ? 14), implying that a major source of the carbon is oxidized organic material. The δD values of 83 igneous and sedimentary rocks are -45 to -80, exceptions are the Fe-rich minerals howieite and deerite, which have δD = ?100. All of these samples could have equilibrated with H 2O having δD ≈ +10 to ?20 and δ18O ≈ ?3 to +8. assuming temperatures of 100–300°C. However, the serpentines ( δD ≈ ?85 to ?110) and the vein minerals ( δD = ?23 to ?55) are exceptions. The vein minerals are 10–20%, richer in deuterium than the adjacent wall rocks; they formed from a relatively D-rich metamorphic water, typically at lower temperatures than did their host rocks. The isotopic compositions of the other Franciscan rocks were affected by three distinct events: (1) hydrothermal alteration of the ophiolite complexes and volcanic rocks as a result of submarine igneous activity at a spreading center or in an island-arc environment; (2) low-temperature, high-pressure regional metamorphism and diagenesis; and (3) a late-stage, very low temperature (<100°C) alteration of the ultramafic bodies by meteoric ground waters, producing lizardite-chrysotile serpentine. In the first two cases, the pore fluid involved in the alteration of the Franciscan rocks was sea water. However, this water became somewhat depleted in D and enriched in 18O during blueschist metamorphism, evolving to values of δD ≈ ? 20 and δ18O ≈ + 6 to + 8 at the highest grades. Except for one graywacke sample, the meteoric waters that affected the serpentinites did not significantly change the ratios of the OH-bearing minerals in any other Franciscan rock.The δ 18O values of orogenic andesites are too low for such magmas to have formed by direct partial melting of Franciscan-type materials in a subduction zone. Andesites either form in some other fashion, or the melts must undergo thorough isotopic exchange with the upper mantle. The great Cordilleran granodiorite-tonalite batholiths, however, are much richer in 18O and may well have formed by large-scale melting or assimilation of Franciscan-type rocks. The range of δD values of Franciscantype rocks is identical to the ?50 to ?80 range shown by most igneous rocks. This suggests that ‘primary magmatic H 2O’ throughout the world may be derived mainly by partial melting of Franciscantype materials, or by dehydration of such rocks in the deeper parts of a Benioff zone. 相似文献
19.
The Zn–Pb±Ag±Cu San Cristobal district is located 100 km east of Lima in the western cordillera of Peru. It is centred around the Chumpe intrusion and is composed of vein and carbonate replacement ore types. The main San Cristobal vein presents a paragenesis that can be divided into three stages: (a) an early wolframite–quartz–pyrite stage, (b) a quartz–base metal stage, and (c) a late quartz–carbonate–barite stage. Fluid inclusions in quartz from the tungsten stage are biphase (LV) at room temperature and homogenise to the liquid phase between 146 and 257 °C. Their salinities range between 2.1 and 5.1 wt.% NaCl equiv. Rare inclusions contain an additional crystal of halite and have salinities of 46–54 wt.% NaCl equiv. Data of the first two stages show a decrease in homogenisation temperatures concomitant with a salinity decline. Fluid inclusions in quartz from the late stage homogenise at higher temperatures, between 252 and 323 °C, with salinities ranging between 4.6 and 6.7 wt.% NaCl equiv. Hydrogen and oxygen isotope data indicate a two-stage evolution. Isotopic compositions of the fluid associated with the first two stages define a trend with constant δ18O values and decreasing δD values (δ18O=3.2‰ to 5.0‰ V-SMOW and δD=−60‰ to −112‰ V-SMOW), which is interpreted as mixing of a dominantly magmatic component with minor meteoric water that had equilibrated with the host rocks. This interpretation is supported by sulphur and lead isotopic data from previous studies. By contrast, the quartz–carbonate–barite stage bears isotopic characteristics defining a trend with a coupled decrease of δ18O and δD (δ18O=−8.1‰ to 2.5‰ V-SMOW and δD=−57‰ to −91‰ V-SMOW) and is explained by addition of meteoric water to the system and subsequent mixing with a less important magmatic component. Different fluid origins are confirmed by laser ablation ICP-MS analyses of the triphase (LVH) and biphase (LV) primary inclusions. The concentrations of the major ore elements, i.e., W, Cu, Zn and Pb, decrease throughout the paragenesis; W, and to a lesser extent Cu, show significant variations, associated with a steep decrease in their concentration. The decreasing concentrations can be explained by mineral deposition and dilution by the meteoric fluid; differences in the rate of decrease indicate selective precipitation of W. Fluid inclusions of the quartz–carbonate stages show an abrupt increase in Ba and Sr concentrations. This is interpreted to reflect a higher volume of host rock silicate alteration, probably due to the increasing size of the fluid flow cell and is explained by the input of a third fluid of unknown origin. LA-ICP-MS analyses show that the fluids were already depleted in W and Cu before reaching the emplacement of carbonate replacement ore type, whereas Zn and Pb were still present in considerable amounts. This is again due to selective precipitation and is consistent with the interpretation that the economically interesting metals were dominantly introduced by magmatic fluids. 相似文献
20.
南京栖霞山铅锌矿床是华东最大的铅锌矿床,具有悠久的研究和开采历史;近些年来的勘探在深部取得显著进展,显示了很好的勘探潜力。本次研究,在系统全面地野外地质观察和样品采集的基础上,开展了详细的岩相学研究和成矿期次的划分,并进行了流体包裹体和氢氧同位素测试分析。结果显示,栖霞山铅锌矿存在两期铅锌矿化:早期以形成层状和块状矿石为特征,闪锌矿深灰-红棕色;晚期矿化以块状、角砾状和脉状构造为特征,闪锌矿呈棕色-浅黄色。早期闪锌矿中包裹体以富液相包裹体类型为主,均一温度分布范围为182~289℃,盐度为0. 9%~8. 2%NaCleqv,成矿流体与富硫同生沉积层发生化学反应可能是其主要的沉淀机制;晚期闪锌矿中也是以富液相包裹体类型为主,但是温度、盐度有所上升,均一温度集中在197~348℃,盐度介于0. 4%~10. 9%NaCleqv之间,指示有更多岩浆流体混入,流体混合可能是主要的沉淀机制。为了限定其深部可能的热液中心位置,我们利用晚期闪锌矿中的包裹体进行流体空间填图。填图结果显示了良好的空间变化规律:成矿流体温度以西南到北东方向为轴,向西南方向温度上升,暗示了成矿流体可能来源于西南方向深部,因此在其西南方向的深部可能具有更好的勘探潜力。 相似文献
|