首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 81 毫秒
1.
热带气旋(TC)预报特别是强度预报是当今大气科学研究和业务预报的重点、难点问题,TC环流内部的对流系统对气旋的结构和强度变化有着十分重要的影响。利用FY-2C/2E黑体亮温(TBB)资料和NCEP分析资料,研究了2005-2012年西北太平洋热带气旋外雨带区的对流非对称分布特征,及其与环境风垂直切变和TC移动的关系。分析发现,整层风垂直切变的方向与TBB一波非对称大值区关于方位角的分布有很好的对应关系。在弱整层风垂直切变条件下(< 5 m/s),TC移动引起的非对称摩擦效应会使对流易出现在移动方向的右前象限。在中强整层风垂直切变条件下(>5 m/s),风切变成为影响对流非对称分布的主要因子,TC外螺旋雨带区的对流集中于顺风切方向及其左侧,对流偏离顺切变左侧的程度一方面受到TC内逆时针环流的影响,另一方面与风垂直切变的强度有关:对于发展阶段的TC,当风垂直切变增强时,一波非对称分布更加显著,切变越强,TC强度越大,外雨带区的对流越偏离顺风切左侧;对于消亡阶段的TC,风垂直切变的影响作用并不明显。  相似文献   

2.
环境风速垂直切变对西北太平洋热带气旋强度变化的影响   总被引:2,自引:0,他引:2  
利用2000—2006年中国气象局《热带气旋年鉴》和NCEP再分析日资料,对环境风垂直切变对西北太平洋热带气旋(TC)强度变化的影响进行统计分析。首先比较了不同高度层之间、不同水平区域平均的全风速垂直切变和纬向风速垂直切变对TC强度变化的影响,结果表明,全风速切变对TC强度变化的抑制作用显著大于纬向风速垂直切变;以200~800 km的圆环区域平均计算的风速垂直切变与TC强度变化的负相关最显著;中高层的风速垂直切变与TC强度变化的相关优于中低层。其次,全风速切变大于8 m/s后抑制TC增强,且这种抑制作用存在6~60 h的滞后。全风速垂直切变大时,滞后时间较短:当全风速切变为8~9 m/s(9~10 m/s)时,TC强度在未来60(48) h开始减弱;当全风速切变大于10 m/s时,TC在6 h内开始减弱。最后,利用偏最小二乘回归建立TC强度变化的预报模型PLS-STIPSV。结果表明,加入风速垂直切变因子后对TC强度预报有所改进,并通过分析标准化回归系数进一步证实了上述的统计结果。   相似文献   

3.
西北太平洋热带气旋强度与环境气流切变关系的气候分析   总被引:1,自引:4,他引:1  
采用NCEP/NCAR再分析资料和JTwC(美国关岛联合台风警报中心)资料,对1974~2004年5~10月西北太平洋热带气旋(TC)强度和环境风垂直切变进行了趋势特征、振荡周期和空间结构分析.结果表明:西北太平洋热带风暴强度以上TC的最大风速和环境风垂直切变在时间上有相反的变化趋势,弱的环境风垂直切变有利于TC强度的增大;前12 h的环境风垂直切变对TC强度的发展影响最大.环境风垂直切变在两北太平洋TC最强的年份表现为环境风切变值小,TC发生密集;最弱的年份表现为环境风切变值大,TC发生稀疏.  相似文献   

4.
热带气旋内部非对称积云对流对其移动的影响   总被引:3,自引:0,他引:3  
陈蓉  谭锐志  林元弼 《大气科学》1996,20(2):195-201
在一个简单的两层板对称CISK模式中,我们考虑了热带气旋内部非对称积云对流的作用,并由此推导出热带气旋移动的动力学速度公式。利用SPECTRUM-90这套热带气旋试验资料,本文着重分析了热带气旋内部非对称积云对流对其运动的影响,以探索热带气旋移动与引导气流偏差的可能机理。计算结果表明,考虑积云对流非对称作用产生的动力学速度确能明显改善热带气旋的路径预报效果,尤其对于一些疑难路径,这种改善作用更突出。因此,CISK理论不仅是热带气旋发展和维持的重要机制,而且对热带气旋移动的影响也不可忽视。  相似文献   

5.
应用中国《台风年鉴》资料、欧洲中心40年月平均再分析资料和NOAA的逐月海温资料,研究了西北太平洋(5°—30°N,110°E—180°)风速垂直切变异常对热带气旋(TC)活动年际变化的影响。研究发现,西北太平洋所有TC、风暴以上级别的TC(TSTY,即达到热带风暴级别及以上的所有TC)和所有台风(WTY,包括台风、强台风和超强台风)年频数与西北太平洋风速垂直切变都显著负相关。西北太平洋风速垂直切变大小对生成源地在南海(5°—30°N,110°—120°E)TC和西北太平洋西部海域(5°—30°N,120°—150°E)TC的影响较小,而对西北太平洋东部海域(5°—30°N,150°E—180°)生成的TC影响最大:即西北太平洋风速垂直切变负异常年,有利于西北太平洋东部海域TC生成发展,使得负异常年较正异常年TC频数偏多和源地平均位置偏东;并且风速垂直切变的变化对TC频数和生成源地影响的显著性,随着TC强度的增加而增加。对TSTY生成环境场的进一步分析表明,西北太平洋风速垂直切变偏小年,季风槽偏强位置偏东,它的东端位于宽阔的太平洋洋面,与弱风速垂直切变区相配合,暖的海温加上低层强烈的正涡度和强烈辐合,且相应的高层有强的气流辐散区,这些环境场都有利于TSTY在主要源地尤其是西北太平洋东部海域生成,这是风速垂直切变偏小年TSTY偏多和生成源地偏东的重要原因。  相似文献   

6.
利用1980-2009年美国联合台风警报中心(Joint Typhoon Warning Center,JTWC)整编的热带气旋(tropical cyclone,TC)最佳路径资料,定义西北太平洋TC 24 h强度变化达到总体样本96%累积概率的变化值,即35 kn作为TC快速增强的阈值。根据NCEP/NCAR资料将200~850 hPa之间 TC所处的环境纬向风切变(wind shear,WS)划分为东风切变(east wind shear,EWS)和西风切变(west wind shear,WWS)。对比了EWS和WWS环境下快速增强热带气旋(rapid intensification tropical cyclones,RITC)的统计和大尺度环境合成场特征,结果表明,近70%的TC快速增强发生在东风切变环境下。TC快速增强概率最高的月份在9月,初始强度区间为[65,75) kn。大的EWS下,850 hPa有来自南海地区的西南气流为RITC输送充沛水汽,500 hPa、200 hPa高压势力强但脊线位置偏北,RITC流出层温度低于-79 ℃,垂直结构上底层的辐合与高层的辐散也相对较强。大WWS下,850 hPa的水汽主要为来自西北太平洋的东南气流,500 hPa副热带高压断裂为几个分散的中心,200 hPa辐散相对较弱,RITC合成位置位于副热带高压西北侧的西风气流,流出层温度约-76 ℃。  相似文献   

7.
西北太平洋热带气旋强度变化的若干特征   总被引:2,自引:0,他引:2  
使用NOAA海表温度资料、ECMWF再分析资料和JTWC台风最佳路径数据,对1984—2013年30年西北太平洋热带区域(100 °E~180 °,0~60 °N)内热带气旋(TC)的强度变化特征及其与环境风垂直切变(VWS)、海表温度(SST)、最大风速半径(RMW)的关系作了统计分析,尤其关注TC强度突变。结果表明:(1)在研究区域内,TC样本中35.2%强度稳定,52.8%强度变化缓慢,仅12.0%强度突变,约92.7%的迅速加强TC样本发生在其台风及以上强度等级;(2)2000年以来,TC强度稳定样本减少,强度迅速变化样本增多。5月和9—10月是TC强度突变的高频期;(3)超过12 m/s的环境VWS下TC迅速加强较少,且只有台风及以上强度TC才能在大于12 m/s的VWS下迅速加强;(4)TC加强和迅速加强主要在28.5~30.0 ℃的SST洋面上发生,在较低SST下仍迅速加强的TC强度等级较高;(5)TC样本的RMW多小于100 km,其中强度突变TC RMW峰值区在20~40 km;(6)加强TC的RMW的24 h变化一般减小,减弱TC的RMW则增大;其中强度突变TC尤其明显,超强台风发生迅速加强时,RMW减小的比率达84.6%,但仍有15.4%比率的RMW增大。   相似文献   

8.
西北太平洋热带气旋潜在生成指数的改进   总被引:5,自引:2,他引:5  
热带气旋潜在生成指数(GPI,Genesis Potential Index)是热带气旋生成可能性大小的空间分布函数,利用大尺度环境场可以应用于热带气旋活动的季节预报,并且可以评估全球气候变化对热带气旋活动的影响。但是目前的GPI基本都是针对全球热带气旋活动构建的,没有考虑到热带气旋不同活动地区及其内部的差异。本研究考虑到南海和西北太平洋热带气旋生成的不同特点,分别构建了适用于南海(5~25°N,100~120°E)和西北太平洋(5~40°N,120~180°E)的热带气旋GPI。改进后的GPI对南海和西北太平洋区域热带气旋生成具有较好的模拟能力,不仅能很好地模拟南海和西北太平洋热带气旋生成频数空间分布的气候特征(相似系数为0.67),而且能够较好地模拟热带气旋生成在年际时间尺度上的空间分布特征。  相似文献   

9.
环境风垂直切变与个例TC整个生命史中强度的关系   总被引:3,自引:4,他引:3  
选取2006年3个典型的TC个例(碧利斯、珍珠和桑美),分别作为强热带风暴、强台风和超强台风的代表,分析在TC整个生命史中环境风垂直切变与其强度变化的关系。结果表明:在典型个例TC中,弱的环境风垂直切变有利于TC的发展;强的环境风垂直切变阻碍TC的发展;并且环境风垂直切变对TC强度的影响存在着一定的时间滞后。  相似文献   

10.
环境风垂直切变小大对台风强度变化有显著影响。通过查阅文献和会议交流发现,由于算法上的细微区别,导致同一个台风在计算环境风垂直切变时结果有所不同,有时差异较大。本研究针对这一问题,以南海快速增强台风为例,利用中国气象局整编的热带气旋年鉴、NCEP FNL、个例数值模拟资料等,计算并对比分析了南海台风在快速增强阶段不同环境风垂直切变计算方案和数据对计算结果的影响,并对业务应用时应该注意的问题展开讨论。  相似文献   

11.
不同方向垂直风切变对热带气旋强度变化的影响存在明显差异,但对热带气旋无维强度变化的影响却差异较小.研究发现不同方向垂直风切变对无维强度变化的影响的细微差异与热带气旋周围的高层西风槽,倒槽,低层季风槽等天气系统配置有关.这一结果表明,在研究不同方向切变对热带气旋强度变化的影响时,除了下垫面热力作用外,还应考虑与切变相关的...  相似文献   

12.

利用中国气象局(CMA)最佳台风路径资料、地面加密自动站资料、SRTM30数据与ERA5再分析资料,对2013年相似路径台风“苏力”与“潭美”造成的福建暴雨落区差异的成因进行了分析。结果表明:(1)两次台风暴雨过程中福建强降水落区相对于台风移动路径方向的位置在其登陆前后有所不同,台风登陆前强降水均位于其路径北侧(闽东北),台风登陆后“苏力”强降水转至其路径南侧,而“潭美”强降水则位于路径附近。(2)台风登陆前“潭美”相较于“苏力”低纬存在强水汽输送带、闽东北上空高能高湿、低层辐合和高层辐散形成的抽吸作用,配合垂直正涡度场及地形抬升作用,该区域上升运动强且伸展高度高,导致其路径北侧降水强度更大、范围更大。(3)台风登陆后,“苏力”路径的南侧为强水汽辐合中心、气流汇合区及能量锋区,垂直正涡度柱南倾,上升运动强烈且强对流不稳定;“潭美”移动路径附近为强水汽辐合中心,西北气流与偏西气流汇合,维持暖湿结构,正涡度柱范围位于台风中心附近,该区域配合低层辐合、高层辐散,强垂直上升运动。受地形的引导、阻挡作用,低层气流加速辐合与抬升,有利于强降水的维持和加强。(4)台风强降水落区与环境风垂直切变有较好的对应关系,强降水区往往位于环境风垂直切变矢量下游和左侧;“苏力”和“潭美”登陆前后环境风垂直切变强弱和方向不同,可能是造成福建暴雨落区差异的重要原因之一。

  相似文献   

13.
The monsoon trough(MT) is one of the large-scale patterns favorable for tropical cyclone(TC) formation over the western North Pacific(WNP). This study re-examines TC formation by treating the MT as a large-scale background for TC activity during May–October. Over an 11-year(2000–10) period, 8.3 TC formation events on average per year are identified to occur within MTs, accounting for 43.1% of the total TC formation events in the WNP basin. This percentage is much lower than those reported in previous studies. Further analysis indicates that TC formation events in monsoon gyres were included at least in some previous studies. The MT includes a monsoon confluence zone where westerlies meet easterlies and a monsoon shear line where the trade easterlies lie north of the monsoon westerlies. In this study, the large-scale flow pattern associated with TC formation in the MT is composited based on the reference point in the confluence zone where both the zonal and meridional wind components are zero with positive vorticity. While previous studies have found that many TCs form in the confluence zone, the composite analysis indicates that nearly all of the TCs formed in the shear region, since the shear region is associated with stronger low-level relative vorticity than the confluence zone. The prevailing easterly vertical shear of zonal wind and barotropic instability may also be conducive to TC formation in the shear region, through the development of synoptic-scale tropical disturbances in the MT that are necessary for TC formation.  相似文献   

14.
张可  方娟 《气象科学》2021,41(5):584-596
利用台风最佳路径资料和全球再分析数据集分析了1979—2018年6—10月西北太平洋地区台风群发事件的统计特征。期间所有台风个例根据群发性质被分为三类:第一类为单独生成的非群发台风;第二类为群发事件中生成,但事件中仅有2个台风成员的"MTC2"台风;第三类为群发事件中生成,且事件中有3个或3个以上台风成员的"MTC3"台风。结果表明,相对于MTC2台风,MTC3台风生成时位置偏北,环境场季风槽辐合更强、高温海区范围更大、中低层大气更湿润。而MTC3台风在1990s末的突变减少导致了西太台风群发事件和台风总数减少。1996年之后,尽管洋面上空仍有较多的热带涡旋扰动,但群发台风活跃的大部分地区垂直风切变增强、高空辐散和季风槽辐合减弱以及西太平洋热带季节内振荡事件(Madden-Julian Oscillation,MJO)的对流活跃位相维持日数减少,它们共同导致了MTC3事件的年代际变化。  相似文献   

15.
Tropical cyclone (TC) rainfall asymmetry is often influenced by vertical wind shear and storm motion. This study examined the effects of environmental vertical wind shear (200-850 hPa) and storm motion on TC rainfall asymmetry over the North Indian Ocean (NIO): the Bay of Bengal (BoB) and the Arabian Sea (AS). Four TC groups were used in this study: Cyclonic Storm (CS), Severe Cyclonic Storm (SCS), Very Severe Cyclonic Storm (VSCS) and Extreme Severe Cyclonic Storm (ESCS). The Fourier coefficients for wave number-1 was used to analyze the structure of TC rainfall asymmetry. Results show that the maximum TC rainfall asymmetry was predominantly in the downshear left quadrant in the BoB, while it placed to downshear right quadrant in the AS, likely due to the different primary circulation strength of the TC vortex. For the most intense cyclone (ESCS), the maximum TC rainfall asymmetry was in the upshear left quadrant in the BoB, whereas it was downshear right quadrant in the AS. It is evident for both basins that the magnitude of TC rainfall asymmetry declined (increased) with TC intensity (shear strength). This study also examined the collective effects of vertical wind shear and storm motion on TC rainfall asymmetry. Here, the analysis in case of the strong shear environment (>7 m s-1) omitted for the AS because the maximum value for this basin was about 7 m s-1. The result showed that the downshear left quadrant was dominant in the BoB for the maximum TC rainfall asymmetry. In a weak shear environment (<5 m s-1), on the other hand, downshear right quadrant is evident for the maximum TC rainfall asymmetry in the BoB, while it placed dominantly downshear left quadrant in the AS. In the case of motion-relative wavenumber-1, the maximum TC rainfall asymmetry was dominantly downshear for both basins.  相似文献   

16.
梁驹  潘婕  王长桂  许吟隆 《气象科学》2013,33(3):246-254
利用ERA-Interim再分析数据提供侧边界条件,驱动Hadley气候预测与研究中心研发的PRECIS区域气候模拟系统,检验PRECIS对1996-2005年西北太平洋热带气旋活动的模拟能力.经与实况资料的对比结果表明:PRECIS能够有效模拟影响热带气旋活动的热力与动力环境场以及西北太平洋热带气旋生成与路径的分布特征;模拟的热带气旋逐年生成频数与实况相比,相关性显著,生成频数空间分布的高值区与实况对应一致;模拟的路径频数分布与实况相比总体一致.但模拟的中国南海海域生成的热带气旋与实况相比偏多,路径频数集中在南海东北部;模拟热带气旋的北移路径偏少,强度偏弱.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号