首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time series of hydrographic sections in the northern North Atlantic from the period 1990 to 2004 are analyzed for changes in the characteristics and distribution of water masses that are involved in the thermohaline circulation (THC). During the 1990s, the North Atlantic Oscillation (NAO) alternates from a positive phase (strong westerlies) to a negative phase (weak westerlies). The reduced ocean heat loss confined the convection in the Labrador Sea to the upper 1,200 m, generating a new salinity minimum layer characterizing the Upper Labrador Sea Water (ULSW), and led to a warming and salinization of the older LSW below due to lateral mixing. The Lower LSW, formed in the first half of the 1990s, spread in the subpolar gyre and reached the Newfoundland and Irminger basins after about 1 to 2 years, where the associated isopycnal doming contributed to eastward frontal shifts in the upper layer. After 5 and 6 years, it arrived in the Iceland and West European basins, respectively. The collapse of the isopycnal dome in the Labrador Sea, associated with the drainage of the Lower LSW, resulted in a slowing of the cyclonic circulation of the subpolar gyre. This was accompanied in the upper layer by a westward shift of the southeastern extension of the gyre and a northward advection of warm and saline subtropical water in its eastern part, which finally reached the Labrador Sea after about 7 years. In the upper layer of the Labrador Sea, the advection of warm and saline water dominated over the heat loss to the atmosphere and the freshwater gain from melting ice and precipitation in the NAO-low period, so that no accumulation of freshwater but an increase of the heat and salt contents were observed, as in the whole eastern part of the subpolar gyre. Within 1 to 2 years after the drop of the NAO in the winter of 1995/1996, the Subarctic (Subpolar) Front shifted northward and westward north of about 50°N, favored by the retreat of the low-salinity tongue extending eastward from the southern Labrador Sea, and it shifted southward and eastward in the Newfoundland Basin. Therefore, the enhanced northward advection of subtropical waters in the northeastern North Atlantic is balanced by the enhanced southward advection of subarctic waters, including Lower LSW in the Newfoundland Basin, indicating a strong response of the gyre component of the THC.  相似文献   

2.
开边界海盆尺度环流模式模拟北太平洋CFCs分布   总被引:8,自引:1,他引:8       下载免费PDF全文
利用一个开边界北太平洋海盆尺度环流模式模拟了北太平洋CFCs的吸收和分布.模式计算了CFC_11海气界面通量及其在海洋中的输运和再分布,考察了开边界对模式模拟结果的影响以及开边界模式中不同沿等密度面扩散系数的影响.打开南边界可以很好地改善赤道以南海区的CFC_11模拟.增加沿等密度面扩散系数使得137°E和165°E断面模拟的高CFC_11水向南、向下输送的强度和影响范围都有明显增大,能很好地改善西北太平洋的模拟结果.西北太平洋是CFC_11的一个重要的汇区,此外在赤道东太平洋上升流区还存在一个小的汇区.  相似文献   

3.
The Middle East region, where arid and semi‐arid regions occupy most of the land, is extremely vulnerable to any natural or anthropogenic reductions in available water resources. Much of the observed interannual‐decadal variability in Middle Eastern streamflow is physically linked to a large‐scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). In this work, the relationship between the NAO index and the seasonal and annual streamflows in the west of Iran was statistically examined during the last four decades. The correlations were constructed for two scenarios (with and without time lag). The associations between the annual and seasonal streamflows and the simultaneous NAO index were found to be poor and insignificant. The possibility of streamflow forecasting was also explored, and the results of lag correlations revealed that streamflow responses at the NAO signal with two and three seasons delays. The highest Spearman correlation coefficient of 0.379 was found between the spring NAO index and the autumn streamflow series at Taghsimab station, indicating that roughly 14% of the variance in the streamflow series is associated with NAO forcing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The 1975 May 26 earthquake, of magnitude Ms = 7.9, occurred in the North Atlantic close to the Azores Archipelago. Its epicentre, as given by US Geological Survey, was 17.5° W, 35.9° N, 200 km south of the Gloria Fault. Several authors determined the focal mechanism as a dextral strike-slip event with no significant dip-slip component, compatible with the relative motion between Eurasia and Nubia plates but away from the presumed plate boundary. The 1975 earthquake generated a tsunami of small amplitude, recorded at the Portuguese tide-gauge network, in Spain and Northern Africa. The peculiar location of the earthquake and tsunami source and the generation of a noticeable tsunami were already discussed by several authors, but up to now, no direct modelling of the tsunami generation and propagation was made to judge the set of source solutions obtained by seismological analysis. In this paper, we present tsunami simulations, backward ray tracing and forward non-linear shallow water simulations using data from Iberia and Azores and Northern Africa. We show that a good fit between observed data and synthetic waveforms can be obtained with a focal mechanism with no significant dip-slip component, favouring its interpretation as almost pure dextral strike-slip event located in an old fracture zone south of Gloria Fault.  相似文献   

5.
The M w=9.3 megathrust earthquake of December 26, 2004 off the coast of Sumatra in the Indian Ocean generated a catastrophic tsunami that caused widespread damage in coastal areas and left more than 226,000 people dead or missing. The Sumatra tsunami was accurately recorded by a large number of tide gauges throughout the world's oceans. This paper examines the amplitudes, frequencies and wave train structure of tsunami waves recorded by tide gauges located more than 20,000 km from the source area along the Pacific and Atlantic coasts of North America.  相似文献   

6.
The degree of stationarity of relationships between the NAO index and long European temperature and precipitation series in winter is quantified by running correlations with a time window of 31 years at 29 and 27 stations in Europe, respectively. They indicate major nonstationarities in the NAO-to-surface climate relationships at most stations. The temporal course most common for correlations with temperature is a slight change prior to about 1950, followed by an increase; for precipitation, a typical course is a decrease in the first half of the 20th century, followed by an increase. The temporal variations in correlations do not result from the presence of trends in the time series. The periods of high correlations with temperature are accompanied with an eastward shift of both NAO action centres; the eastward shift is thus at least partly responsible for the time variations in correlations. huth@ufa.cas.cz  相似文献   

7.
The North Atlantic Oscillation(NAO) exhibited a marked eastward shift in the mid-1970 s. Observations show that the extreme weather events in Europe have emerged frequently in the past decades. In this paper, based upon the daily NAO index, we have calculated the frequency of in-situ NAO events in winter during 1950-2011 by defining the Eastern-type NAO(ENAO) and Western-type NAO(WNAO) events according to its position at the east(west) of 10°W. Then, the composites of the blocking frequency, temperature and precipitation anomalies for different types of NAO events are performed. Results show that the frequency of Euro-Atlantic blocking events is distributed along the northwest-southeast(southwest-northeast) direction for the negative(positive) phase. Two blocking action centers in Greenland and European continent are observed during the negative phase while one blocking action center over south Europe is seen for the positive phase. The action center of blocking events tends to shift eastward as the NAO is shifted toward the European continent. Moreover, the eastern-type negative phase(ENAO) events are followed by a sharp decline of surface air temperature over Europe(especially in central, east, and south Europe), which have a wider and stronger impact on the weather over European continent than the western-type negative phase(WNAO) events do. A double- branched structure of positive precipitation anomalies is seen for the negative phase event, besides strong positive precipitation anomalies over south Europe for ENAO event. The eastern-type and western-type positive phase(ENAO+ and WNAO+) can lead to warming over Europe. A single-branched positive precipitation anomaly dominant in central and north Europe is seen for positive phase events.  相似文献   

8.
Numerical models are used to estimate the meridional overturning and transports along the paths of two hydrographic cruises, carried out in 1997 and 2002 from Greenland to Portugal. We have examined the influence of the different paths of the two cruises and found that it could explain 0.4 to 2 Sv of difference in overturning (the precise value is model-dependent). Models show a decrease in the overturning circulation between 1997 and 2002, with different amplitudes. The CLIPPER ATL6 model reproduces well the observed weakening of the overturning in density coordinates between the cruises; in the model, the change is due to the combination of interannual and high-frequency forcing and internal variability associated with eddies and meanders. Examination of the -coordinate overturning reveals model–data discrepancies: the vertical structure in the models does not change as much as the observed one. The East Greenland current variability is mainly wind-forced in the ATL6 model, while fluctuations due to eddies and instabilities explain a large part of the North Atlantic Current variability. The time-residual transport of dense water and heat due to eddy correlations between currents and properties is small across this section, which is normal to the direction of the main current.  相似文献   

9.
Apparent oxygen utilisation is potentially biased by abiotic, physical processes. Using a coupled 3-D circulation-oxygen model, this potential is quantitatively estimated for a region in the eastern subtropical North Atlantic, called the Beta Triangle, where an inconsistency exists between observational estimates of high carbon export from the euphotic zone, based on oxygen utilisation rates in the thermocline (Jenkins 1982), and those of low nutrient supply to the euphotic zone (Lewis et al. 1986, 2004). Our results indicate that in the upper ocean, the Jenkins (1982) estimate is indeed biased high by approximately 10% due to abiotic processes feigning respiration, thus contributing to the apparent inconsistency. Vertical integration, however, yields an abiotic fraction of less than 3%, so the apparent observational discrepancy can not be resolved.Responsible Editor: Franciscus Colijn  相似文献   

10.
Seismic reflection and refraction data acquired on four transects spanning the Southeast Greenland rifted margin and Greenland–Iceland Ridge (GIR) provide new constraints on mantle thermal structure and melting processes during continental breakup in the North Atlantic. Maximum igneous crustal thickness varies along the margin from >30 km in the near-hotspot zone (<500 km from the hotspot track) to 18 km in the distal zone (500–1100 km). Magmatic productivity on summed conjugate margins of the North Atlantic decreases through time from 1800±300 to 600±50 km3/km/Ma in the near-hotspot zone and from 700±200 to 300±50 km3/km/Ma in the distal zone. Comparison of our data with the British/Faeroe margins shows that both symmetric and asymmetric conjugate volcanic rifted margins exist. Joint consideration of crustal thickness and mean crustal seismic velocity suggests that along-margin changes in magmatism are principally controlled by variations in active upwelling rather than mantle temperature. The thermal anomaly (ΔT) at breakup was modest (100–125°C), varied little along the margin, and transient. Data along the GIR indicate that the potential temperature anomaly (125±50°C) and upwelling ratio (4 times passive) of the Iceland hotspot have remained roughly constant since 56 Ma. Our results are consistent with a plume–impact model, in which (1) a plume of radius 300 km and ΔT of 125°C impacted the margin around 61 Ma and delivered warm material to distal portions of the margin; (2) at breakup (56 Ma), the lower half of the plume head continued to feed actively upwelling mantle into the proximal portion of the margin; and (3) by 45 Ma, both the remaining plume head and the distal warm layer were exhausted, with excess magmatism thereafter largely confined to a narrow (<200 km radius) zone immediately above the Iceland plume stem. Alternatively, the warm upper mantle layer that fed excess magmatism in the distal portion of the margin may have been a pre-existing thermal anomaly unrelated to the plume.  相似文献   

11.
A numerical shelf circulation model was developed for the Scotian Shelf, using a nested-grid setup consisting of a three-dimensional baroclinic inner model embedded inside a two-dimensional barotropic outer model. The shelf circulation model is based on the Princeton Ocean Model and driven by three-hourly atmospheric forcing provided by a numerical weather forecast model and by tidal forcing specified at the inner model's open boundaries based on pre-calculated tidal harmonic constants. The outer model simulates the depth-mean circulation forced by wind and atmospheric pressure fields over the northwest Atlantic Ocean with a horizontal resolution of 1/12°. The inner model simulates the three-dimensional circulation over the Gulf of St. Lawrence, the Scotian Shelf, and the adjacent slope with a horizontal resolution of 1/16°. The performance of the shelf circulation model is assessed by comparing model results with oceanographic observations made along the Atlantic coast of Nova Scotia and in the vicinity of Sable Island (on the Scotian Shelf) during two periods: October 2000–March 2001 and April–June 2002. Analysis of model results on Sable Island Bank indicates that tidal currents account for as much as ∼80% of the total variance of near-bottom currents, and currents driven by local winds account for ∼30% of the variance of the non-tidal near-bottom currents. Shelf waves generated remotely by winds and propagating into the region also play an important role in the near-bottom circulation on the bank.  相似文献   

12.
Large-scale redistribution of sand by hydrodynamical processes in shelf seas is important for basin and coastal evolution on time scales of a thousand to tens of thousands of years. The influence of tides on the large-scale net sand-transport patterns in the North Sea has received much attention, but the influence of wind-driven flow and wind waves has hardly been investigated. Here, to establish the present-day situation and to develop a method that can also be used for palaeo-situations and forecasts for different sea levels, this influence is assessed for the present southern North Sea using a numerical flow model, a parametric wave model and a wave-averaged sand-transport formulation. Various forcing combinations are used to identify the dominant transport mechanisms: tides only, tides and wind, tides and waves, and combined tides, wind and waves. Wind forcing is applied in two ways to find an efficient, but still representative, method of incorporating this stochastic process: a statistical wind climatology and an observed time series. The results show that (i) the wind climatology yields a good approximation of the sand transport computed using the time series; (ii) wind-driven flow and waves only contribute significantly to the net sand transport by tides when acting together where tidal currents are small; and (iii) various combinations of forcings dominate the net sand transport in different regions of the southern North Sea: (a) tides dominate in the southern, middle and northwestern parts of the Southern Bight and in the region of The Wash; (b) tides, wind-driven flow and waves all are important in the northeastern part of the Southern Bight; and (c) wind-driven flow and waves dominate north of the Friesian Islands, in the German Bight and on the Dogger Bank. Qualitative comparison with observations shows good agreement.  相似文献   

13.
A paleomagnetic sampling was carried out along four sections (altogether 86 lava flows, 548 samples) in the North Atlantic Igneous Province outcropping in Faroe Islands, Denmark. The four polarity zones in the 700-m-thick exposed part of the Faroes lower formation can be correlated with the geomagnetic polarity time scale as C26n-C25r-C25n-C24r. The seven lava flows erupted during C25n indicate a very low eruption rate in the upper part of the Faroes lower formation of ∼1/70 kyr. The Faroes middle and upper formations (composite thickness ∼2300 m) are all reversely magnetized corresponding to C24r. The eruption rate at the onset of middle formation volcanism was very high as evidenced by several thick lava sequences recording essentially spot readings of the paleomagnetic field. The shift in eruption rate between the Faroes lower and middle formations and evidence that onset of the Faroes middle formation volcanism took place in C24r are of particular importance, placing onset of middle formation volcanism in close temporal relation to North Atlantic continental break-up and the late Paleocene thermal maximum. After grouping flows recording the same field directions, we obtained 43 independent readings of the paleomagnetic field, yielding a paleomagnetic pole with coordinates 71.4°N, 154.7°E (A95=6.0°, K=14, N=43); age 55-58 Ma. The pole is supported by a positive reversal test. Paleosecular variation, estimated as the angular standard deviation of the virtual geomagnetic pole distribution 21.7°+3.9°/−2.8°, is close to expected for the given age and paleolatitude. Our new Faroes paleomagnetic pole is statistically different from the majority of previously published poles from the British and Faroes igneous provinces, and we suggest that these older data should be used with care.  相似文献   

14.
The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linkage appears to have an interdecadal change from weak connection to strong connection. During the period of 1948–1977, the NAO was insignificantly correlated to the WNPTCF. However, during the period of 1980–2009, they were significantly correlated with stronger(weaker) NAO corresponding to more(fewer) tropical cyclones in the western North Pacific. The possible reason for such a different relationship between the NAO and the WNPTCF during the former and latter periods is further analyzed from the perspective of large-scale atmospheric circulations. When the NAO was stronger than normal in the latter period, an anomalous cyclonic circulation prevailed in the lower troposphere of the western North Pacific and the monsoon trough was intensified, concurrent with the eastward-shifting western Pacific subtropical high as well as anomalous low-level convergence and high-level divergence over the western North Pacific. These conditions favor the genesis and development of tropical cyclones, and thus more tropical cyclones appeared over the western North Pacific. In contrast, in the former period, the impact of the NAO on the aforementioned atmospheric circulations became insignificant, thereby weakening its linkage to the WNPTCF. Further study shows that the change of the wave activity flux associated with the NAO during the former and latter periods may account for such an interdecadal shift of the NAO–WNPTCF relationship.  相似文献   

15.
Understanding the volcanic processes operating during continental break-up is hampered by the subsequent burial of the majority of the volcanic pile beneath thick sedimentary sequences currently located in bathymetrically deep offshore regions. Although portions of these volcanic systems are currently exposed on land, a full understanding of the volcanic structure, the eruptive styles and their evolution is not possible as these localities have been partially eroded. Furthermore, as the onshore exposure represents a volumetrically minor part of the entire system, the documented eruptive styles may not be representative. The increasing availability of 3D seismic reflection data has the potential to significantly enhance our understanding of break-up related volcanism, as it allows direct access to detailed information from the buried volcanic succession. However, conventional seismic interpretation methodologies cannot determine lava flow morphologies, and as a result, eruptive styles and their evolution are still largely based on extrapolation from the accessible onshore outcrop data. New 3D seismic volume visualisation techniques allow the buried basalt morphologies to be examined for the first time in a manner similar to outcrop, aerial photographic or satellite-based observations. Applying this new approach for 3D seismic data to the North Rockall Trough, U.K. Atlantic margin, demonstrates that a range of volcanic features indicative of eruptive style can be determined. The data reveal a complex terrain containing lava flows originating from discrete volcanic centres, contemporaneous normal faults, linear fissures a few kilometres long, radial fissures and inflation ridges. Lava flow morphologies that are indicative of tube-fed inflated sheetflows, intracanyon flows and elongate subaerial flows that enter water downslope to produce a large hyaloclastite delta are observed.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Editorial responsibility: J. Stix  相似文献   

16.
Analysis of a quality-controlled database of Gulf Stream warm-core rings (WCRs) between 75° and 50°W during 1978–1999 demonstrates a significant correlation between WCR occurrences and variations in large-scale atmospheric forcing related to the state of the North Atlantic Oscillation (NAO). The mechanisms for linking the NAO with the rate of WCR occurrences are two-fold: (1) the influence of the NAO on Gulf Stream (GS) position, which could affect the interaction of the Gulf Stream with the New England Seamounts chain and thus allow for a higher/lower number of WCR occurrences; (2) the NAO-induced eddy kinetic energy (EKE) variability in the Gulf Stream region (GSR), which is indicative of the baroclinic instability processes necessary for WCR formation. Variability in GS movement is studied by analyzing annual mean positions of the Gulf Stream North Wall obtained from satellite-derived sea surface temperature (SST) frontal charts. Response of GSR EKE to fluctuations in the state of the NAO is examined with a numerical simulation of the North Atlantic basin from 1980–1999. The North Atlantic basin is simulated using a 1/6°-resolution eddy-resolving Regional Ocean Modeling System (ROMS) model that spins up with Southampton Oceanography Center (SOC) ocean-atmosphere atlas-derived atmospheric forcing fields. Model-derived EKE estimates are observed to be in good agreement with TOPEX/Poseidon altimeter-based EKE estimates as well as with results from other modeling studies for the North Atlantic basin. We suggest that lateral movement of the GS may not be the primary mechanism causing variation in the rate of WCR occurrences, because GS position is observed to respond at a lag of one year, whereas annual rates of WCR occurrences respond at 0-year lag to the NAO. Based on results from numerical simulations of the North Atlantic basin, adjustment to NAO-induced wind forcing is seen to impact the GSR EKE intensity and possibly the related baroclinic instability structure of the GS at 0-year lag. These results suggest that NAO-induced interannual variability in GSR EKE is the most likely mechanism affecting WCR occurrences. Numerical simulations show that high (low) phases in the state of the NAO exhibit higher (lower) EKE in the GSR, providing a greater (lesser) source of baroclinic instability to the GS front, possibly resulting in higher (lower) occurrences of WCRs.  相似文献   

17.
Little is known about the spatial and temporal variability of the stable isotopic composition of precipitation in the North Atlantic and its relationship to the North Atlantic Oscillation (NAO) and anthropogenic climate change. The islands of the Azores archipelago are uniquely positioned in the middle of the North Atlantic Ocean to address this knowledge gap. A survey of spatial and temporal variability of the stable isotope composition of precipitation in Azores is discussed using newly presented analyses along with Global Network of Isotopes in Precipitation data. The collected precipitation samples yield a new local meteoric water line (δ2H = 7.1 * δ18O + 8.46) for the Azores region and the North Atlantic Ocean. The annual isotopic mean of precipitation shows a small range for the unweighted and precipitation mass‐weighted δ18O‐H2O values. Results show an inverse relation between the monthly δ18O‐H2O and the amount of precipitation, which increases in elevation and into the interior of the island. Higher amounts of precipitation (from convective storm systems) do not correspond to the most depleted values of stable isotopes in precipitation. Precipitation shows an orographic effect with depleted δ18O‐H2O values related to the Rayleigh effect. Monthly δ18O‐H2O values for individual precipitation sampling stations show little relationship to air temperature. Results show a local source of moisture during the summer with the characteristics of the first vapour condensate. The stable isotope composition of precipitation is strongly correlated to the NAO index, and δ18O‐H2O values show a statistically significantly trend towards enrichment since 1962 coincident with the increased air temperature and relative humidity due to climate change. Results are in line with observations of increasing sea surface temperature and relative humidity.  相似文献   

18.
19.
Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air–sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air–sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr−1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.  相似文献   

20.
A first study from the subtropical western Atlantic, using 231Pa/230Th ratios as a kinematic proxy for deep water circulation, provided compelling evidence for a strong link between climate and the rate of Meridional Overturning Circulation (MOC) over the last deglaciation. However, these results warrant confirmation from additional locations and water depths because the interpretation of the sedimentary 231Pa/230Th ratio in terms of circulation vigor can be biased by variations in particle flux and composition. We have measured 231Pa/230Th in a core from the Iberian margin, in the Northeastern Atlantic basin, and have compared these new results to the data from the western Atlantic basin. We find that the reduction in the circulation during H1 and YD and the subsequent increases first recognized in the sediment deposited on Bermuda Rise are also evident in the eastern basin, in a totally different sedimentary regime, confirming that sedimentary 231Pa/230Th ratios record basin-wide changes in deep water circulation. However, some differences between the eastern and western records are also recognized, providing preliminary evidence to differentiate between renewal rates in the two North Atlantic basins and between shallower and deeper overturning. Our results suggest the possible existence of two sources of Glacial North Atlantic Intermediate Deep Water (GNAIW), one in the south Labrador Sea and another west of Rockall Plateau. Both sources contributed to the meridional overturning but the two had different sensitivity to meltwater from the Laurentide and the Fennoscandian ice sheets during the deglaciation. These results indicate that additional information on the geometry and strength of the ventilation of the deep Atlantic can be obtained by contrasting the evolution of sediment 231Pa/230Th in different sections of the Atlantic Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号