首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A vortical mechanism for generation of astrophysical jets is proposed based on exact solutions of the hydrodynamic equations with a generalized Rankine vortex. It is shown that the development of a Rankine vortex in the polar layer of a rotating gravitating body creates longitudinal fluxes of matter that converge toward the vortex trunk, providing an exponential growth in the angular rotation velocity of the trunk and a pressure drop on its axis. The increased rotational velocity of the vortex trunk and the on-axis pressure drop cease when the discontinuity in the azimuthal velocity at the surface of the trunk reaches the sound speed. During this time, ever deeper layers of the gravitating body are brought into the vortical motion, while the longitudinal velocity of the flow along the vortex trunk builds up, producing jet outflows of mass from its surface. The resulting vortices are essentially dissipationless. Dedicated to the 100-th birthday of Academician V. A. Ambartsumyan __________ Translated from Astrofizika, Vol. 51, No. 2, pp. 201–218 (May 2008).  相似文献   

2.
The observed properties of astrophysical jets are reviewed, and the techniques used to estimate the parameters of the underlying beams are described. This information is then used in a theoretical treatement of the Kelvin-Helmholtz instability of the flows, and the relevance of this instability to the persistence of the observed structures is emphasised.  相似文献   

3.
We calculate an exact form for the regeneration term of the turbulent dynamo equation which is valid for arbitrary values of the magnetic Reynolds number. It is shown that finite conductivity can change the regenerative character of the dynamo, depending on the geometry and character of the fluid motion in the turbulent eddies.On leave from the Departamento de Fisica Teorica e Experimental, UFRN, Natal, RB, Brazil.  相似文献   

4.
In the present paper, we discuss an MHD model for the formation of astrophysical jets, in which the directed flows are ejected along the rotation axis of an accretion disk formed from a cloud having a large scale magnetic field parallel to the angular momentum axis of the disk. The acceleration of jets is due to thej×B force in the relaxing magnetic twist which is produced by the rotation of the disk. The characteristic features of the jets, predicted by our mechanism and hopefully to be proven by observations, are the helical velocity and the hollow cylindrical shape of the jet, with a diameter of roughly the size of the region from which the acceretion disk collected its mass. Justification for the assumption of the perpendicular orientation of the disk, or the parallelism of the jets, to the external magnetic field may be provided by the fact that the component of rotation whose axis is perpendicular to the field may have been damped in the earlier phase of the cloud contraction.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 Septemper–6 October, 1984.  相似文献   

5.
We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of AGN, GRBs and microquasars, showing that multi-component powerlaw-type particle distributions are likely to occur.  相似文献   

6.
The combination of accretion disks and supersonic jets is used to model many active astrophysical objects, viz., young stars, relativistic stars, and active galactic nuclei. However, existing theories on the physical processes by which these structures transfer angular momentum and energy from disks to jets through viscous or magnetic torques are still relatively approximate. Global stationary solutions do not permit understanding the formation and stability of these structures; and global numerical simulations that include both the disk and jet physics are often limited to relatively short time scales and astrophysically out-of-range values of viscosity and resistivity parameters that are instead crucial to defining the coupling of the inflow/outflow dynamics. Along these lines we discuss self-consistent time-dependent simulations of the launching of supersonic jets by magnetized accretion disks, using high resolution numerical techniques. We shall concentrate on the effects of the disk physical parameters, and discuss under which conditions steady state solutions of the type proposed in the self-similar models of Blandford and Payne can be reached and maintained in a self-consistent nonlinear stationary state.  相似文献   

7.
8.
Strong magnetic fields inhibit degeneracy in Fermi gases, that is, they postpone degeneracy to higher densities or lower temperatures. We derive this principle, virtually unknown in the physical and astrophysical literature, for the case of an ideal Dirac electron gas. Its possible importance in astrophysics is due to the fact that the equations of state of Fermi gases at given density and temperature can be qualitatively changed by this degeneracy-inhibition by strong fields. All astrophysical work with strong fields up to the present has used the field-free equations of state and the usual MHD approximation: permeability 1. Their interest was focussed on the effects of a strong Lorentz force term. We consider an application to hypothetical degenerate stellar objects with arbitrarily strong fields to see what effects the changed equations of state would lead to. One result is that the luminosity-temperature relation of the star is changed: the luminosity is reduced for given mass and interior temperature.  相似文献   

9.
We present the local linear stability analysis of rotating jets confined by a toroidal magnetic field. Under the thin flux tube approximation, we derive the equation of motion for slender magnetic flux tubes. In addition to the terms responsible for the conventional instability of the toroidal magnetic field, a term related to the magnetic buoyancy and a term corresponding to the differential rotation become relevant for the stability properties. We find that the rigid rotation stabilizes while the differential rotational destabilizes the jet in a way similar to the Balbus–Hawley instability. Within the frame of our local analysis, we find that if the azimuthal velocity is of the order of or higher than the Alfvén azimuthal speed, the rigidly rotating part of the jet interior can be completely stabilized, while the strong shearing instability operates in the transition layer between the rotating jet interior and the external medium. This can explain the limb-brightening effect observed in several jets. However, it is still possible to find jet equilibria that are stable all across the jet, even in the presence of differential rotation. We discuss observational consequences of these results.  相似文献   

10.
Recent observations concerning the growth and decay of photospheric magnetic flux present a challenge to the conventional picture of the photosphere as a passive medium through which flux tubes emerge inertly. Rather, they suggest the possibility that interactions between the magnetic flux and the photospheric velocity fields may give rise to changes in the observed surface flux.In this paper the physics of flux changes are reviewed and the various terms in the hydromagnetic equation which give rise to the growth and decay of magnetic flux are examined. Several kinematic models for field changes are examined and it is shown that new flux loops may be generated by suitable oscillatory velocity fields near the boundaries of existing magnetic structures, thus increasing the gross flux through the photosphere. It is suggested that this mechanism may account for the appearance of moving magnetic features (knots of opposite polarities) at the boundaries of decaying sunspots.Other models are discussed and a tentative explanation of the apparently unbalanced growth of opposite polarities is given in terms of a current-sheet model.  相似文献   

11.
The magnetic fields and energy flows in an astronomical jet described by our earlier model are calculated in detail. Though the field distribution varies with the external pressure function   p ( z )  , it depends only weakly on the other boundary conditions. Individual field lines were plotted; the lines become nearly vertical at the bottom and are twisted at the top. An animation of a field line's motion was made, which shows the line being wound up by the accretion disc's differential rotation and rising as a result of this. The distribution of Poynting flux within the jet indicates that much of the energy flows up the jet from the inside of the accretion disc but a substantial fraction flows back down to the outside.  相似文献   

12.
13.
14.
15.
The nonlinear dynamics of a rotating jet is examined following its ejection from a compact gravitating object by a vortex mechanism. A scenario is described in which a dense stream expands and is subsequently transformed into a nonstationary vortex consisting of a cylindrical core and a “sheath.” At this stage of development, a converging radial flow of matter in the differentially rotating nonuniform sheath collimates the jet and speeds up the rotation of the core, as well as the flow of matter along the jet, in accordance with a power law or “explosive” instability, until the velocity discontinuity at the surface of the core approaches the sound speed. Flows of this type have low energy dissipation and can serve as unique channels for the acceleration and collimation of jet eruptions from young stars, active galactic nuclei, and quasars. Translated from Astrofizika, Vol. 52, No. 1, pp. 135–145 (February 2009).  相似文献   

16.
The acceleration mechanisms of relativistic jets are of great importance for understanding various astrophysical phenomena such as gamma-ray bursts,active galactic nuclei and microquasars.One of the most popular scenarios is that the jets are initially Poynting-flux dominated and succumb to magnetohydrodynamic instability leading to magnetic reconnections.We suggest that the reconnection timescale and efficiency could strongly depend on the geometry of the jet,which determines the length scale on which the orientations of the field lines change.In contrast to a usuallyassumed conical jet,the acceleration of a collimated jet can be found to be more rapid and efficient(i.e.a much more highly saturated Lorentz factor can be reached)while the jets with lateral expansion show the opposite behavior.The shape of the jet could be formed due to the lateral squeezing on the jet by the stellar envelope of a collapsing massive star or the interaction of the jet with stellar winds.  相似文献   

17.
On the basis of issues raised by observations of BL Lac objects and the qualitative jet model proposed by Bakeret al. in 1988, we have been led to consider the quantitative role of coherent, stimulated emission in jets and construct a new jet model of blazars in which a relativistic electron beam with an axial symmetric, power-law distribution is injected from the central engine into the jet plasma. We study quantitatively the synchrotron emission of the relativistic electron beams. Using the weak turbulent theory of plasma, we discuss the interaction between relativistic electron beams and jet plasma, and the roles of stimulated emission. The main results are:
  1. The synchrotron emission increases sensitively with the increase of the angle between the direction of the beam and the magnetic field. When the direction of the beam is vertical to the magnetic field, the synchrotron emission reaches its maximum, i.e. the emitted waves are beamed in the direction of the jet axis. We suggest that radio selected BL Lac objects belong to this extreme classification.
  2. The synchrotron emission of the relativistic beam increases rapidly with the increase of the Lorentz factor of the relativistic electron,γ, whenγ ≤ 22.5, then decreases rapidly with increase ofγ.
  3. The stimulated emission also increases with increasing Lorentz factorγ of the relativistic electrons whenγ ≤ 35 and then decreases with the increasingγ. The maximum stimulated emission and the maximum synchrotron emission occur at different frequencies. Stimulated emission is probably very important and reasonable flare mechanism in blazars.
  4. The rapid polarization position angle (PA) swings may arise from the interaction between the relativistic electron beam and the turbulent plasma.
  相似文献   

18.
We present experimental results of plasma jet, interacted with an ambient medium, using intense lasers to investigate the complex features of astrophysical jets. This experiment was performed in France at the LULI facility, Ecole Polytechnique, using one long pulse laser to generate the jet and a short pulse laser to probe it by proton radiography. A foam filled cone target was used to generate high velocity plasma jet, and a gas jet nozzle produced the well known ambient medium. Using visible pyrometry and interferometry, we were able to measure the jet velocity and electronic density. We get a panel of measurements at various gas density and time delay. From these measurements, we could underline the growth of a perturbed shape of the jet interaction with the ambient medium. The reason of this last observation is still in debate and will be presented in the article.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号