首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial variability of turbulent flow statistics in the roughness sublayer (RSL) of a uniform even-aged 14 m (= h) tall loblolly pine forest was investigated experimentally. Using seven existing walkup towers at this stand, high frequency velocity, temperature, water vapour and carbon dioxide concentrations were measured at 15.5 m above the ground surface from October 6 to 10 in 1997. These seven towers were separated by at least 100m from each other. The objective of this study was to examine whether single tower turbulence statistics measurements represent the flow properties of RSL turbulence above a uniform even-aged managed loblolly pine forest as a best-case scenario for natural forested ecosystems. From the intensive space-time series measurements, it was demonstrated that standard deviations of longitudinal and vertical velocities (u, w) and temperature (T) are more planar homogeneous than their vertical flux of momentum (u* 2) and sensible heat (H) counterparts. Also, the measured H is more horizontally homogeneous when compared to fluxes of other scalar entities such as CO2 and water vapour. While the spatial variability in fluxes was significant (>15 %), this unique data set confirmed that single tower measurements represent the canonical structure of single-point RSL turbulence statistics, especially flux-variance relationships. Implications to extending the moving-equilibrium hypothesis for RSL flows are discussed. The spatial variability in all RSL flow variables was not constant in time and varied strongly with spatially averaged friction velocity u*, especially when u* was small. It is shown that flow properties derived from two-point temporal statistics such as correlation functions are more sensitive to local variability in leaf area density when compared to single point flow statistics. Specifically, that the local relationship between the reciprocal of the vertical velocity integral time scale (Iw) and the arrival frequency of organized structures (/h) predicted from a mixing-layer theory exhibited dependence on the local leaf area index. The broader implications of these findings to the measurement and modelling of RSL flows are also discussed.  相似文献   

2.
3.
非均匀下垫面湍流通量观测的印痕分析   总被引:4,自引:1,他引:4  
彭谷亮  刘绍民  蔡旭晖 《大气科学》2008,32(5):1064-1070
利用2005年在北京昌平区小汤山开展的非均匀下垫面观测实验的观测数据,分别处理了涡旋相关法和大孔径闪烁仪LAS测得的感热通量,并运用印痕模型对数据进行“源区”分析。分析结果表明:在复杂地表上,涡旋相关的测量值由于混杂了其他下垫面的通量信息,不能真实地反映其观测区域的湍流特征,存在着观测误差。而LAS观测出现的低估问题则与掺混高度和“源区”有关。通过用印痕方法进行数据订正后,以上问题均得到很好的改善,订正结果与LAS观测通量的线性关系良好,两者的相关系数达到0.9。实验结果验证了印痕模型在非均匀下垫面的适用性。  相似文献   

4.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

5.
Field experimental data in the atmospheric surface layer are analyzed using toolsfrom statistical geometry. The data consist of velocity measurements from sonicanemometer arrays. In the context of large eddy simulations (LES), these arrayspermit the spatial filtering needed to separate large from small scales. Time seriesof various quantities relevant to LES are evaluated from the data. Results show thatthe preferred filtered fluid deformation is axisymmetric extension and the preferredsubgrid stress state is axisymmetric contraction. The filtered fluctuating vorticityshows preferred alignments with the mean vorticity, with the streamwise direction,and with the intermediate strain-rate eigenvector. The alignment between eigenvectorsof the subgrid-scale stress and filtered strain rate is used to test eddy viscosity andmixed model formulations. In qualitative agreement with prior laboratory measurements at much lower Reynolds numbers, a bimodal distribution is observed, which can be reduced to good alignment with eddy viscosity closure using the mixed model.  相似文献   

6.
We first deal with sea-spray flux estimates for short fetch conditions in coastal Mediterranean areas. To this end, a sea-state dependent model for the whitecap fraction was included in three different formulations for the sea-spray source function. A comparison with the sea-spray fluxes, calculated on the basis of aerosol size distributions measured at the island of Porquerolles located south off the French Riviera, evaluates the predictions of different whitecap dependant flux formulations. Then we deal with the spatial distribution of the whitecap fraction and the sea-spray fluxes in the study area. To achieve this, a whitecap dependant flux formulation was forced by a wave numerical model that was implemented in the study area. Experimental results on wave conditions have been used to adjust the model in the Mediterranean coastal area. Numerical simulations of wave and whitecap coverage have been carried out during typical regional wind events, and they show a nonhomogeneous distribution of the sea-surface production over the northern Mediterranean as a consequence of the spatial variation of the sea state. In particular, we note the occurrence of a narrow band of high sea-surface production following the northern coast and along the east part of the Gulf of Lions.  相似文献   

7.
A large aperture scintillometer (LAS) andradio wave scintillometer (RWS)were installed over a heterogeneous areato test the applicability of the scintillation method.The heterogeneity in the area, whichconsisted of many plots, was mainly caused bydifferences in thermal properties ofthe crops; the variations in theaerodynamic roughness lengthwere small. The water vapour fluxesderived from the combined LAS-RWSsystem, also known as the two-wavelengthmethod, agreed fairly well with the aggregatedwater vapour fluxes derived from in-situeddy covariance measurements. The water vapourfluxes derived from a stand-alone LASare also presented. It was found that a single LASand an estimate of the area averagedavailable energy (using a simple parameterisationscheme) can provide also reasonablearea-averaged water vapour fluxes.  相似文献   

8.
城市近地层湍流通量及CO2通量变化特征   总被引:1,自引:0,他引:1  
利用北京325m气象塔47m高度上2006年全年连续观测获得的湍流资料,分析了北京城市近地层动量通量、感热通量、潜热通量和CO2通量的典型日变化、月平均日变化和季节变化特征。分析结果显示:动量通量具有明显的单波峰日变化特征,在15时(北京时间)左右达到最大,季节变化中春季最大,冬季次之,夏、秋季最小;感热通量和潜热通量全年变化范围分别为-92~389W.m-2和-75~376W.m-2,其日变化也表现为单波峰特征。感热通量的日变化受城市下垫面和人为热源影响,入夜后虽然降为负值,但只略小于0。阴雨天感热通量和潜热通量均很小,降雨前后有明显区别。感热和潜热最大值分别在春季3月和夏季6月,最小值都在冬季1月;城市下垫面CO2通量总表现为正值,即净排放,最大值为3.88mg.m-2.s-1,不稳定情况下最小值小于-2mg.m-2.s-1。受到人类活动的影响,CO2通量的日变化特征在工作日与周末有明显区别;由于冬季采暖,CO2通量明显大于夏季;在夜间,CO2通量受进城车辆的影响也出现高值。  相似文献   

9.
Water-flume experiments are conducted to study the structure of turbulent flow within and above a sparse model canopy consisting of two rigid canopies of different heights. This difference in height specifies a two-dimensional step change from a rough to a rougher surface, as opposed to a smooth-to-rough transition. Despite the fact that the flow is in transition from a rough to a rougher surface, the thickness of the internal boundary layer scales as x 4/5, consistent with smooth-to-rough boundary layer adjustment studies, where x is the downstream distance from the step change. However, the analogy with smooth-to-rough transitions no longer holds when the flow inside the canopy and near the canopy top is considered. Results show that the step change in surface roughness significantly increases turbulence intensities and shear stress. In particular, there is an adjustment of the mean horizontal velocity and shear stress as the flow passes over the rougher canopy, so that their vertical profiles adjust to give maximum values at the top of this canopy. We also observe that the magnitude and shape of the inflection in the mean horizontal velocity profile is significantly affected by the transition. The horizontal and vertical turbulence spectra compare well with Kolmogorov’s theory, although a small deviation at high frequencies is observed in the horizontal spectrum within the canopy. Here, for relatively low leaf area index, shear is found to be a more effective mechanism for momentum transfer through the canopy structure than vortex shedding.  相似文献   

10.
北太平洋海气界面湍流热通量的年际变化   总被引:3,自引:1,他引:3  
郑建秋  任保华  李根 《大气科学》2009,33(5):1111-1121
本文采用美国伍兹霍尔海洋研究所客观分析海气通量项目提供的1958~2006年月平均的湍流热通量及相关气象场数据, 利用EOF分析、小扰动方法、线性回归、相关分析等方法研究了北太平洋海气界面湍流热通量年际变化的时空特征、 影响因子及其与大气环流的关系。结果表明, 北太平洋湍流热通量的年际变化在冬季最为显著。我国东部海域及其向中东太平洋的延伸部分为冬季潜热通量和感热通量年际变化的关键区。冬季潜热通量的年际变化在副热带太平洋和菲律宾海域主要受风速变化影响, 在北太平洋的高纬和低纬海域尤其是赤道中太平洋主要受比湿差变化影响, 而冬季感热通量的年际变化在整个北太平洋都主要受海气温差变化影响。受大尺度环流影响, 异常低压中心的东 (西) 侧海气比湿差和海气温度差偏小 (偏大), 所以异常低压中心的东 (西) 侧潜热输送和感热输送偏弱 (偏强)。  相似文献   

11.
To test the applicability of the scintillation method over a heterogeneous area an experiment was carried out in the summer of 1998 in Flevoland (The Netherlands). In the patchy area only four crops were grown namely sugar beet, potatoes, wheat and onions. From eddy covariance measurements it was found that the heterogeneity was mainly caused by differences in thermal properties. No variations in the aerodynamics roughness length were observed. Two large aperture scintillometers were installed at a height of 11.6 and 20.4 m. A good resemblance was found between the sensible heat fluxes derived from both LAS instruments and the area-averaged fluxes obtained from the in-situ eddy covariance measurements. The slight underestimation of the lower LAS could be assessed using a blending height model and an analytical footprint model. The results also indicated that when scintillometer measurements are made below the blending height the violation to Monin–Obukhov Similarity Theory is small and that reasonable fluxes can be obtained from path-averaged structure parameters.  相似文献   

12.
半干旱区不同下垫面近地层湍流通量特征分析   总被引:8,自引:3,他引:8  
涂钢  刘辉志  董文杰 《大气科学》2009,33(4):719-725
本文分析了2003~2005年半干旱区退化草地和农田下垫面近地层湍流通量日、季、年的变化特征, 探讨了不同年份的气候背景和下垫面土地覆被对地气交换过程的影响。结果表明: 半干旱区退化草地和农田近地层湍流通量具有明显的日变化、季变化周期; 地气间通量交换年际间的差异主要受当年的气候背景影响, 尤其是降水的影响; 同时还受到下垫面覆被的影响。潜热通量和感热通量的能量分配比率呈反位相变化, 且农田和退化草地的变化趋势相似, 在夏季潜热通量所占比例均超过感热通量; 两种下垫面的波恩比月均值变化趋势十分相似, 量级接近, 夏季低, 春、秋季高; 夏季退化草地和农田下垫面波恩比均小于或等于1。  相似文献   

13.
Second-order closure models for the canopy sublayer (CSL) employ aset of closure schemes developed for `free-air' flow equations andthen add extra terms to account for canopy related processes. Muchof the current research thrust in CSL closure has focused on thesecanopy modifications. Instead of offering new closure formulationshere, we propose a new mixing length model that accounts for basicenergetic modes within the CSL. Detailed flume experiments withcylindrical rods in dense arrays to represent a rigid canopy areconducted to test the closure model. We show that when this lengthscale model is combined with standard second-order closureschemes, first and second moments, triple velocity correlations,the mean turbulent kinetic energy dissipation rate, and the wakeproduction are all well reproduced within the CSL provided thedrag coefficient (CD) is well parameterized. The maintheoretical novelty here is the analytical linkage betweengradient-diffusion closure schemes for the triple velocitycorrelation and non-local momentum transfer via cumulant expansionmethods. We showed that second-order closure models reproducereasonably well the relative importance of ejections and sweeps onmomentum transfer despite their local closure approximations.Hence, it is demonstrated that for simple canopy morphology (e.g.,cylindrical rods) with well-defined length scales, standard closureschemes can reproduce key flow statistics without much revision.When all these results are taken together, it appears that thepredictive skills of second-order closure models are not limitedby closure formulations; rather, they are limited by our abilityto independently connect the drag coefficient and the effectivemixing length to the canopy roughness density. With rapidadvancements in laser altimetry, the canopy roughness densitydistribution will become available for many terrestrialecosystems. Quantifying the sheltering effect, the homogeneity andisotropy of the drag coefficient, and more importantly, thecanonical mixing length, for such variable roughness density isstill lacking.  相似文献   

14.
Using three methods from nonlinear dynamics, we contrast the level of organization inthe vertical wind velocity (w) time series collected in the atmospheric surface layer(ASL) and the canopy sublayer (CSL) for a wide range of atmospheric stability ()conditions. The nonlinear methods applied include a modified Shannon entropy, waveletthresholding, and mutual information content. Time series measurements collected overa pine forest, a hardwood forest, a grass-covered forest clearing, and a bare soil, desertsurface were used for this purpose. The results from applying all three nonlinear timeseries measures suggest that w in the CSL is more organized than that in the ASL, and that as the flows in both layers evolve from near-neutral to near-convective conditions, the level of organization increases. Furthermore, we found that the degree of organization in w associated with changes in is more significant than the transition from CSL to ASL.  相似文献   

15.
We address some of the methodological challenges associated with the measurement of turbulence and use of scintillometers in the urban roughness sublayer (RSL). Two small-aperture scintillometers were located near the roof interface in a densely urbanized part of Basel, Switzerland, as part of the Basel Urban Boundary-Layer Experiment (BUBBLE) in the summer of 2002. Eddy correlation instruments were co-located near the mid-point of each scintillometer path for data verification purposes. The study presents the first values of the inner length scale of turbulence (l 0) and the refractive index structure parameter of air for a city and demonstrates the influence of mechanical driven turbulence on dissipation. Comparison of dissipation values determined from the two approaches show large scatter that is possibly due to the spatial inhomogeneity of the turbulence statistics within the RSL. Velocity and temperature spectra display a −2/3 slope in the inertial subrange, although the spectral ratio is less than the theoretical prediction of 4/3 expected for isotropy. Conventional Monin–Obukhov equations used to calculate fluxes from the scintillometer were replaced with urban forms of the equations. The results suggest that the scintillometer may be an appropriate tool for the measurement of sensible heat flux (Q H ) above the rooftops given a suitable determination of the effective measurement height.  相似文献   

16.
Using land-use types derived from satellite remote sensing data collected by the EOS Moderate Resolution Imaging Spectroradiometer (EOS/MODIS), the mesoscale and turbulent fluxes generated by inhomogeneities of the underlying surface over the Jinta Oasis, northwestern China, were simulated using the Regional Atmospheric Modeling System (RAMS4.4). The results indicate that mesoscale circulation generated by land-surface inhomogeneities over the Jinta Oasis is more important than turbulence. Vertical heat fluxes and water vapor are transported to higher levels by mesoscale circulation. Mesoscale circulation also produces mesoscale synoptic systems and prevents water vapor over the oasis from running off. Mesoscale circulation transports moisture to higher atmospheric levels as the land-surface moisture over the oasis increases, favoring the formation of clouds, which sometimes leads to rainfall. Large-scale wind speed has a significant impact on mesoscale heat fluxes. During the active phase of mesoscale circulation, the stronger large-scale winds are associated with small mesoscale fluxes; however, background wind seems to intensify the turbulent sensible heat flux and turbulent latent heat flux. If the area of oasis is enlarged properly, mesoscale circulation will be able to transport moisture to higher levels, favoring the formation of rainfall in the oasis and protecting its "cold island" effect. The impact of irrigation on rainfall is important, and increasing irrigation across the oasis is necessary to protect the oasis.  相似文献   

17.
南京夏季城郊湍流统计特性及湍流通量对比分析   总被引:1,自引:0,他引:1  
利用2010年南京夏季城市热岛三维结构试验中的湍流观测资料,对南京市委党校和南京信息工程大学观测场2个观测点的湍流统计量和湍流通量进行了对比分析。结果表明:城市平均风速大于郊区;城郊2地的湍流强度都呈现出Ix〉Iy〉Iz的趋势,水平方向上的湍强城郊相差不大,而垂直方向上,郊区的Iz要明显低于城市;城、郊的风速归一化标准差σu/u*、σv/u*、σw/u*都符合MoninObukhov相似理论的"1/3"定律,城市的垂直风速归一化标准差大于郊区,而水平方向上的风速归一化标准差则明显小于其他下垫面;郊区风速归一化标准差与常熟农田的拟合结果较为相似,而城市风速归一化标准差与长白山森林的拟合结果更为接近;夏季城市以感热通量为主,而郊区湍流能量的输送以潜热通量为主,且城市的湍流热通量受太阳辐射的影响更大。  相似文献   

18.
To investigate how velocity variances and spectra are modified by the simultaneous action of topography and canopy, two flume experiments were carried out on a train of gentle cosine hills differing in surface cover. The first experiment was conducted above a bare surface while the second experiment was conducted within and above a densely arrayed rod canopy. The velocity variances and spectra from these two experiments were compared in the middle, inner, and near-surface layers. In the middle layer, and for the canopy surface, longitudinal and vertical velocity variances () were in phase with the hill-induced spatial mean velocity perturbation (Δu) around the so-called background state (taken here as the longitudinal mean at a given height) as predicted by rapid distortion theory (RDT). However, for the bare surface case, and remained out of phase with Δu by about L/2, where L is the hill half-length. In the canopy layer, wake production was a significant source of turbulent energy for , and its action was to re-align velocity variances with Δu in those layers, a mechanism completely absent for the bare surface case. Such a lower ‘boundary condition’ resulted in longitudinal variations of to be nearly in phase with Δu above the canopy surface. In the inner and middle layers, the spectral distortions by the hill remained significant for the background state of the bare surface case but not for the canopy surface case. In particular, in the inner and middle layers of the bare surface case, the effective exponents derived from the locally measured power spectra diverged from their expected  − 5/3 value for inertial subrange scales. These departures spatially correlated with the hill surface. However, for the canopy surface case, the spectral exponents were near  − 5/3 above the canopy though the minor differences from  − 5/3 were also correlated with the hill surface. Inside the canopy, wake production and energy short-circuiting resulted in significant departures from  − 5/3. These departures from  − 5/3 also appeared correlated with the hill surface through the wake production contribution and its alignment with Δu. Moreover, scales commensurate with Von Karman street vorticies well described wake production scales inside the canopy, confirming the important role of the mean flow in producing wakes. The spectra inside the canopy on the lee side of the hill, where a negative mean flow delineated a recirculation zone, suggested that the wake production scales there were ‘broader’ when compared to their counterpart outside the recirculation zone. Inside the recirculation zone, there was significantly more energy at higher frequencies when compared to regions outside the recirculation zone.  相似文献   

19.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

20.
The flux-variance similarity relation and the vertical transfer of scalars exhibit dissimilarity over different types of surfaces,resulting in different parameterization approaches of relative transport efficiency among scalars to estimate turbulent fluxes using the flux-variance method.We investigated these issues using eddycovariance measurements over an open,homogeneous and flat grassland in the eastern Tibetan Plateau in summer under intermediate hydrological conditions during rainy season.In unstable conditions,the temperature,water vapor,and CO2 followed the flux-variance similarity relation,but did not show in precisely the same way due to different roles(active or passive) of these scalars.Similarity constants of temperature,water vapor and CO2 were found to be 1.12,1.19 and 1.17,respectively.Heat transportation was more efficient than water vapor and CO2.Based on the estimated sensible heat flux,five parameterization methods of relative transport efficiency of heat to water vapor and CO2 were examined to estimate latent heat and CO2 fluxes.The strategy of local determination of flux-variance similarity relation is recommended for the estimation of latent heat and CO2 fluxes.This approach is better for representing the averaged relative transport efficiency,and technically easier to apply,compared to other more complex ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号