首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stochastic trajectory model was used to estimate scalar fluxfootprints in neutral stabilityfor canopies of varying leaf area distributions andleaf area indices. An analytical second-order closure model wasused to predict mean wind speed, second moments and the dissipationrate of turbulent kinetic energy within a forest canopy.The influence of source vertical profile on the flux footprint wasexamined. The fetch is longer for surface sourcesthan for sources at higher levels in the canopy. In order tomeasure all the flux components, and thus the total flux, with adesired accuracy, sources were located at the forest floor in thefootprint function estimation. The footprint functions werecalculated for five observation levels above the canopy top. Itwas found that at low observation heights both canopy density andcanopy structure affect the fetch. The higher abovethe canopy top the flux is measured, the more pronounced is the effectof the canopy structure. The forest fetch for flux measurements isstrongly dependent on the required accuracy: The 90% flux fetchis greater by a factor of two or more compared to the 75% fetch. Theupwind distance contributing 75% of flux is as large as 45 timesthe difference between canopy height and the observation heightabove the canopy top, being even larger for low observationlevels.  相似文献   

2.
We used wind-tunnel experiments to investigate velocity-field adjustment and scalar diffusion behaviour in and above urban canopies located downwind of various roughness elements. Staggered arrays of rectangular blocks of various heights H and plan area ratios λp were used to model the urban canopies. The velocity field in the roughness sublayer (height \({z \lesssim 2H}\)) reached equilibrium at distances proportional to \({\sqrt{L_{\rm c}H}}\) where L c is the canopy-drag length scale determined as a function of λp and the block side length L. A distance of about \({20\sqrt{L_{\rm c}H}}\) was required for adjustment at z = H/2 (in the canopy), and a distance of about \({10\sqrt{L_{\rm c}H}}\) was required at z = 2H (near the top of the roughness sublayer). Diffusion experiments from a ground emission source revealed that differences in upwind roughness conditions had negligible effects on the plume growth near the source (up to a few multiples of L from the source) if the source was located at a fetch F larger than about \({10\sqrt{L_{\rm c}H}}\) from the upwind edge of the canopy. However, at locations farther downwind (more than several multiples of L from the source), upwind conditions had considerable effects on the plume growth. For a representative urban canopy, it was shown that a much larger fetch than required for velocity-field adjustment in the roughness sublayer was necessary to eliminate the effects of upwind conditions on plume widths at 24L downwind from the source.  相似文献   

3.
The influence of an internal boundary layer and a roughness sublayer on flux–profile relationships for momentum and sensible heat have been investigated for a closed beech forest canopy with limited fetch conditions. The influence was quantified by derivation of local scaling functions for sensible heat flux and momentum (h and m) and analysed as a function of atmospheric stability and fetch. For heat, the influences of the roughness sublayer and the internal boundary layer were in agreement with previous studies. For momentum, the strong vertical gradient of the flow just above the canopy top for some wind sectors led to an increase in m, a feature that has not previously been observed. For a fetch of 500 m over the beech forest during neutral atmospheric conditions, there is no height range at the site where profiles can be expected to be logarithmic with respect to the local surface. The different influence of the roughness sublayer on h and m is reflected in the aerodynamic resistance for the site. The aerodynamic resistance for sensible heat is considerably smaller than the corresponding value for momentum.  相似文献   

4.
Footprint Analysis For Measurements Over A Heterogeneous Forest   总被引:8,自引:2,他引:6  
The air flow and vertical distribution of sources/sinks inside aforest canopy have been taken into accountin the analysis of the contribution of sources/sinks to measured fluxes and concentrations above a forest. Thestochastic estimators for concentrations and fluxes are described and their evaluation is performed by simulationof an ensemble of fluid parcel trajectories. The influence of the forest canopy on the footprint is important forobservation levels up to a few times the forest height. The influence of along-wind turbulent diffusion, whichanalytical atmospheric surface layer (ASL) footprint models do not account for, is significant even at higherlevels. The footprint analysis has been performed to deduce the Douglas fir canopy carbon dioxide uptake from eddycovariance flux measurements above a mixed Douglas fir–beech forest during the pre-leaf periods of the beech.The scatter in the results indicates that such an analysis is limited, presumably due to horizontal inhomogenetiesin flow statistics, which were not included in trajectory simulation. The analysis, however, is useful for theestimation of the qualitative effect of the forest canopy on the footprint function.  相似文献   

5.
The intermittent structure of turbulence within the canopy sublayer (CSL) is sensitive to the presence of foliage and to the atmospheric stability regime. How much of this intermittency originates from amplitude variability or clustering properties remains a vexing research problem for CSL flows. Using a five-level set of measurements collected within a dense hardwood canopy, the clustering properties of CSL turbulence and their dependence on atmospheric stability are explored using the telegraphic approximation (TA). The binary structure of the TA removes any amplitude variability from turbulent excursions but retains their zero-crossing behaviour, and thereby isolating the role of clustering in intermittency. A relationship between the spectral exponents of the actual and the TA series is derived across a wide range of atmospheric stability regimes and for several flow variables. This relationship is shown to be consistent with a relationship derived for long-memory and monofractal processes such as fractional Brownian motion (fBm). Moreover, it is demonstrated that for the longitudinal and vertical velocity components, the vegetation does not appreciably alter fine-scale clustering but atmospheric stability does. Stable atmospheric stability conditions is characterized by more fine scale clustering when compared to other atmospheric stability regimes. For scalars, fine-scale clustering above the canopy is similar to its velocity counterpart but is significantly increased inside the canopy, especially under stable stratification. Using simplified scaling analysis, it is demonstrated that clustering is much more connected to space than to time within the CSL. When comparing intermittency for flow variables and their TA series, it is shown that for velocity, amplitude variations modulate intermittency for all stability regimes. However, amplitude variations play only a minor role in scalar intermittency. Within the crown region of the canopy, a ‘double regime’ emerges in the inter-pulse duration probability distributions not observed in classical turbulence studies away from boundaries. The double regime is characterized by a power-law distribution for shorter inter-pulse periods and a log-normal distribution for large inter-pulse periods. The co-existence of these two regimes is shown to be consistent with near-field/far-field scaling arguments. In the near-field, short inter-pulse periods are controlled by the source strength, while in the far-field long inter-pulse periods are less affected by the precise source strength details and more affected by the transport properties of the background turbulence.  相似文献   

6.
The two-scalar covariance budget is significant within the canopy sublayer (CSL) given its role in modelling scalar flux budgets using higher-order closure principles and in estimating the segregation ratio for chemically reactive species. Despite its importance, an explicit expression describing how the two-scalar covariance is modified by inhomogeneity in the flow statistics and in the vertical variation in scalar emission or uptake rates within the canopy volume remains elusive even for passive scalars. To progress on a narrower version of this problem, an analytical solution to the two-scalar covariance budget in the CSL is proposed for the most idealized flow conditions: a stationary and planar homogeneous flow inside a uniform and dense canopy with a constant leaf area density distribution. The foliage emission (or uptake) source strengths are assumed to vary exponentially with depth while the forest floor emission is represented as a scalar flux. The analytical solution is a superposition of a homogeneous part that describes how the two-scalar covariance at the canopy top is transported and dissipated within the canopy volume, and an inhomogeneous part governed by local production mechanisms of the two-scalar covariance. The homogeneous part is primarily described by the canopy adjustment length scale, and the attenuation coefficients of the turbulent kinetic energy and the mean velocity. Conditions for which the vertical variation of the two-scalar covariance is controlled by the rapid attenuation in the mean velocity and turbulent kinetic energy profiles, vis-à-vis the vertical variation of the scalar source strength, are explicitly established. This model also demonstrates how dissimilarity in the emissions from the ground, even for the extreme binary case with one scalar turned ‘on’ and the other scalar turned ‘off’, modifies the vertical variation of the two-scalar covariance within the CSL. To assess its applicability to field conditions, the analytical model predictions were compared with observations made at two different forest types—a sparse pine forest at the Hyytiälä SMEAR II-station (in Finland) and a dense alpine hardwood forest at Lavarone (in Italy). While the model assumptions do not represent the precise canopy morphology, attenuation properties of the turbulent kinetic energy and the mean velocity, observed mixing length, and scalar source attenuation properties for these two forest types, good agreement was found between measured and modelled two scalar covariances for multiple scalars and for the triple moments at the Hyytiälä site.  相似文献   

7.
The flux–gradient relationships in the unstable roughness sublayer (RSL) over an open canopy of black spruce forest were examined using long-term observations from an instrumented tower. The observed gradients normalised with the surface fluxes and height above the zero-plane displacement showed differences from a universal function established in the surface layer. The magnitude of differences was not constant throughout the year even at the same observation height. Also the magnitude of the differences was different for each scalar, and scalar similarity in the context of the flux–gradient relationship did not always hold. The variation of the differences was explained by the relative contribution of overstorey vegetation to the total flux from the entire ecosystem. This suggests that a mismatch of the vertical source/sink distributions between scalars leads to a different strength of the near-field dispersion effect for each scalar, and this resulted in inequality of eddy diffusivity among scalars in the RSL. An empirical method that predicts the magnitude of differences is proposed. With this method, it is possible to estimate the eddy diffusivity of scalars provided that the relative contribution of overstorey vegetation to the total flux from the ecosystem is known. Also this method can be used to estimate the eddy diffusivity for scalars whose primary sources are at ground level, such as methane and nitrous oxide.  相似文献   

8.
The flux footprint, that is the contribution per unit emission from each element of the upwind surface area to measurement of the vertical flux of a passive scalar, is calculated for fluxes estimated by micrometeorological profile techniques. It is found that the upwind extent of the footprint for concentration-profile flux estimates is similar to that of the footprint for eddy-covariance flux measurements, when the eddy-covariance measurement is made at a height equal to the arithmetic mean of the highest and lowest profile measurement heights for stable stratification or the geometric mean for unstable stratification. The concentration-profile flux footprint depends on the ratio of the highest to the lowest measurement height, but is insensitive to the number of measurement levels. The concentration-profile flux footprint extends closer to the measurement location than does the 'equivalent eddy-covariance flux footprint, and the difference becomes more pronounced as the ratio of the profile measurement heights increases. The flux footprint for the Bowen-ratio technique is identical to that for a two-level profile measurement only for very limited circumstances. In the more general case, a flux footprint cannot be defined for the Bowen-ratio technique and the uniform upwind fetch required for representative flux measurements depends on the specific spatial distribution of surface fluxes.  相似文献   

9.
The flux contribution of coherent structures to the total exchange of energy and matter is investigated in a spruce canopy of moderate density in heterogeneous, complex terrain. The study deploys two methods of analysis to estimate the coherent exchange: conditional averages in combination with wavelet analysis, and quadrant analysis. The data were obtained by high-frequency single-point measurements using sonic anemometers and gas analysers at five observation heights above and within the canopy and subcanopy, and represent a period of up to 2.5 months. The study mainly addresses the momentum transfer and exchange of sensible heat throughout the roughness sublayer, while results are provided for the exchange of carbon dioxide and water vapour above the canopy. The magnitude of the flux contribution of coherent structures largely depends on the method of analysis, and it is demonstrated that these differences are attributed to differences in the sampling strategy between the two methods. Despite the differences, relational properties such as sweep and ejection ratios and the variation of the flux contribution with height were in agreement for both methods. The sweep phase of coherent structures is the dominant process close to and within the canopy, whereas the ejections gain importance with increasing distance to the canopy. The efficiency of the coherent exchange in transporting scalars exceeds that for momentum by a factor of two. The occurrence of coherent structures results in a flux error less than 4% for the eddy-covariance method. Based on the physical processes identified from the analysis of the ejection and sweep phases along the vertical profile in the roughness sublayer, a classification scheme for the identification of exchange regimes is developed. This scheme allows one to estimate the region of the canopy participating in the exchange of energy and matter with the above-canopy air under varying environmental conditions.  相似文献   

10.
This paper considers a modification to the localized near-field (LNF) theory for predicting scalar concentrations from source distributions in plant canopies. It is argued that the non-diffusive, near-field part of the transition probability Pn, and thus the near-field contribution of the scalar concentration Cn, in the original theory are simply errors. The (approximate) equality of the sum of Cn and the diffusive, far-field contribution Cf with the total scalar concentration C is not guaranteed in general by this theory. A revision is suggested.  相似文献   

11.
The effects of fetch on turbulent flow and pollutant dispersion within a canopy formed by regularly-spaced cubical objects is investigated using large-eddy simulation. Six tracer gases are simultaneously released from a ground-level continuous pollutant line source placed parallel to the spanwise axis at the first, second, third, fifth, seventh and tenth rows. Beyond the seventh row, the standard deviations of the fluctuations in the velocity components and the Reynolds shear stresses reach nearly equivalent states. Low-frequency turbulent flow is generated near the bottom surface around the first row and develops as the fetch increases. The turbulent flow eventually passes through the canopy at a near-constant interval. The mean concentration within the canopy reaches a near-constant value beyond the seventh row. In the first and second rows, narrow coherent structures frequently affect the pollutant escape from the top of the canopy. These structures increase in width as the fetch increases, and they mainly affect the removal of pollutants from the canopy.  相似文献   

12.
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.  相似文献   

13.
A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.  相似文献   

14.
An experiment was set-up to investigate the adjustment of turbulence over a roughness transition (moorland to forest). Results from this experiment support the development of an internal boundary layer (IBL) at the transition, which propagates upwards by turbulent diffusion as a function of distance downwind from the transition. Spectra and length-scale results uphold the hypothesis that, over a transition to a rough surface, the variance distribution shifts towards smaller wavelengths/length scales. However, results suggest that the adjustment of streamwise velocity variance may be faster than the adjustment of the vertical velocity variance. The concept of an equilibrium layer developing above the new surface is supported. Fetch requirements for equilibrium are, however, found to differ between first order and second order (flux) statistics, with second order statistics requiring a longer fetch. Results indicate that fetch should exceed 25 times the height of the measurement above the zero plane, which is a 2° (±0.5) growth angle, for flux equilibrium.  相似文献   

15.
Turbulent dispersion of spores was studied near a source located inside a wheat canopy. Two colors of Lycopodium spores were released simultaneously at a steady rate from line sources at two heights (0.4–0.5 m and 0.7–0.8 m) in a 0.8 to 1.0 m tall crop. The number of spores of each color released was estimated by weighing the sources before and after each release. Aerial spore concentrations were measured at 2 and 4 m downwind of the sources using rotorods placed at four heights above the canopy and small suction traps at two heights inside the canopy. Concentrations near the ground were estimated from deposits on sticky glass microscope slides placed on the ground. Experiments were conducted on six different days. Friction velocities ranged from about 0.3 to 0.5 m s–1. The average horizontal fluxes of spores were calculated as the product of the observed concentrations and average wind speeds. At a distance of 2 m downwind from the sources, more than 16 to 44% of the flux of spores released from the lower source and more than 41 to 50% of the flux of spores released from the upper source were estimated to be above the canopy. These fluxes were compared with fluxes calculated using both a K-theory model and a random-flight-fluid-parcel-trajectory simulation model. The fluxes predicted by the models were generally considerably less than the values determined experimentally.  相似文献   

16.
We describe pragmatic and reliable methods to examine the influence of patch-scale heterogeneities on the uncertainty in long-term eddy-covariance (EC) carbon flux data and to scale between the carbon flux estimates derived from land surface optical remote sensing and directly derived from EC flux measurements on the basis of the assessment of footprint climatology. Three different aged Douglas-fir stands with EC flux towers located on Vancouver Island and part of the Fluxnet Canada Research Network were selected. Monthly, annual and interannual footprint climatologies, unweighted or weighted by carbon fluxes, were produced by a simple model based on an analytical solution of the Eulerian advection-diffusion equation. The dimensions and orientation of the flux footprint depended on the height of the measurement, surface roughness length, wind speed and direction, and atmospheric stability. The weighted footprint climatology varied with the different carbon flux components and was asymmetrically distributed around the tower, and its size and spatial structure significantly varied monthly, seasonally and inter-annually. Gross primary productivity (GPP) maps at 10-m resolution were produced using a tower-mounted multi-angular spectroradiometer, combined with the canopy structural information derived from airborne laser scanning (Lidar) data. The horizontal arrays of footprint climatology were superimposed on the 10-m-resolution GPP maps. Monthly and annual uncertainties in EC flux caused by variations in footprint climatology of the 59-year-old Douglas-fir stand were estimated to be approximately 15–20% based on a comparison of GPP estimates derived from EC and remote sensing measurements, and on sensor location bias analysis. The footprint-variation-induced uncertainty in long-term EC flux measurements was mainly dependent on the site spatial heterogeneity. The bias in carbon flux estimates using spatially-explicit ecological models or tower-based remote sensing at finer scales can be estimated by comparing the footprint-weighted and EC-derived flux estimates. This bias is useful for model parameter optimizing. The optimization of parameters in remote-sensing algorithms or ecosystem models using satellite data will, in turn, increase the accuracy in the upscaled regional carbon flux estimation.  相似文献   

17.
This paper describes a wind-tunnel experiment on the dispersion of trace heat from an effectively planar source within a model plant canopy, the source height being h s = 0.80 h c , where h c is the canopy height. A sensor assembly consisting of three coplanar hot wires and one cold wire was used to make simultaneous measurements of the temperature and the streamwise and vertical velocity components. It was found that:
  1. The thermal layer consisted of two parts with different length scales, an inner sublayer (scaling with h s and h c ) which quickly reached streamwise equilibrium downstream of the leading edge of the source, and an outer sublayer which was self-preserving with a length scale proportional to the depth of the thermal layer.
  2. Below 2h c , the vertical eddy diffusivity for heat from the plane source (K HP ) was substantially less than the far-field limit of the corresponding diffusivity for heat from a lateral line source at the same height as the plane source. This shows that dispersion from plane or other distributed sources in canopies is influenced, near the canopy, by turbulence ‘memory’ and must be considered as a superposition of both near-field and far-field processes. Hence, one-dimensional models for scalar transport from distributed sources in canopies are wrong in principle, irrespective of the order of closure.
  3. In the budgets for temperature variance, and for the vertical and streamwise components of the turbulent heat flux, turbulent transport was a major loss between h s and h c and a principal gain mechanism below h s , as also observed in the budgets for turbulent energy and shear stress.
  4. Quadrant analysis of the vertical heat flux showed that sweeps and ejections contributed about equal amounts to the heat flux between h s and h c , though among the more intense events, sweeps were dominant. Below h s , almost all the heat was transported by sweeps.
  相似文献   

18.
Eddy-covariance observations above the densely built-up Centre of Nanjing were made from December 2011 to August 2012. Separate eddy-covariance systems installed at two levels on a 36-m tower located on a rooftop were operated simultaneously, and observations grouped into two sectors (A, B) according to the prevalent wind directions. For sector A, where the nearby buildings are all below the lower measurement level, the sensible heat and momentum fluxes are generally greater at the upper level. For sector B, where several high-rise buildings are located upwind, the sensible heat and momentum fluxes at the upper level are close to those at the lower level. The analysis shows that the turbulent eddy characteristics differ between the two wind sectors, leading to a different behaviour of turbulent exchange between the two levels. A hypothesis is proposed that addresses the vertical variation of turbulent fluxes in the urban roughness sublayer (RSL). For sector A, the buildings block the flow, change the trajectory of scalars, and distort the footprint of scalar fluxes; this ‘blocking effect’ is believed to lead to a smaller sensible heat flux above the canopy layer. Such an effect should decrease with height in the RSL, explaining the increase of the observed turbulent heat flux with height. In addition, the presence of non-uniform building heights adversely affects turbulence organization around the canopy top, and likely elevates the inflection point of the mean flow to a higher elevation close to the upper measurement level, where larger shear results in a larger momentum flux. For sector B, wake effects from the nearby high-rise buildings strongly reduce turbulence organization at higher elevations, leading to similar sensible heat and momentum fluxes at both measurement levels.  相似文献   

19.
Dispersive flux terms are formed when the time-averaged meanmomentum equation is spatially averaged within the canopy volume.These fluxes represent a contribution to momentum transfer arisingfrom spatial correlations of the time-averaged velocity componentswithin a horizontal plane embedded in the canopy sublayer (CSL).Their relative importance to CSL momentum transfer is commonlyneglected in model calculations and in nearly all fieldmeasurement interpretations. Recent wind-tunnel studies suggestthat these fluxes may be important in the lower layers of thecanopy; however, no one study considered their importance acrossall regions of the canopy and for a wide range of canopy roughnessdensities. Using detailed laser Doppler anemometry measurementsconducted in a model canopy composed of cylinders within a largeflume, we demonstrate that the dispersive fluxes are onlysignificant (i.e., >10%) for sparse canopies. These fluxes arein the same direction as the turbulent flux in the lower layers ofthe canopy but in the opposite direction near the canopy top. Fordense canopies, we show that the dispersive fluxes are <5% atall heights. These results appear to be insensitive to theReynolds number (at high Reynolds numbers).  相似文献   

20.
The influence of a freshly logged area in a managed pine forest on the flow field is investigated by comparing sodar wind profile data over the forest canopy with the synoptic wind field extracted from North American Regional Reanalysis, National Centers for Environmental Prediction. As a consequence of the pressure gradient arising from the sharp temperature difference between the clearcut and the surrounding uncut forests, the local wind direction over the forest measured with the sodar departs dramatically from the prevailing synoptic wind direction when the latter is transverse to the clearcut-sodar direction. Sodar measurements also indicate systematic strong updrafts during daytime followed by nighttime downdrafts with wind coming from the logged area. This suggests the presence of horizontal advection carrying daytime warm air (or nighttime cool air) from the clearcut to the forested area. This paper also examines the influence of wind velocity, clearcut fetch, and solar radiation on locally generated circulations and advection. The presence of local circulations arising from contrasting neighboring surface characteristics well outside the footprint is of particular relevance for atmospheric flux sites where robust surface?Catmosphere exchange values are sought. This study highlights the high level of circumspection required at the time of identifying locations for flux sites. It also suggests vigilant monitoring of the surrounding landscape during eddy?Cflux measurements particularly in actively managed landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号