共查询到20条相似文献,搜索用时 62 毫秒
1.
机载LiDAR点云数据中电力线的提取方法研究 总被引:4,自引:0,他引:4
提出了一种基于机载LiDAR点云数据的电力线提取方法。首先在进行LiDAR数据滤波的基础上,分离地面点与非地面点;然后针对非地面点采取一种基于角度的滤波方法,分离非地面点中的植被点与电力线点,对电力线点,采用二维Hough变换进一步分离各条电力线点;最后使用双曲余弦函数模型,对单条电力线进行曲线拟合。实验结果表明,该方法能够从LiDAR点云数据中较完整地提取出电力线点,电力线点提取正确率达96.2%,并能够对电力线走廊进行三维重建。 相似文献
2.
3.
4.
5.
6.
机载激光雷达数据中电力线的快速提取 总被引:1,自引:0,他引:1
针对当前机载LiDAR技术在电力巡线应用中对电力线数字模型高精度和快速重建的需求,该文提出一种高效的电力线点云分类方法。首先基于局部范围点的高程统计直方图,实现电力线点的快速粗提取;然后运用随机抽样一致性算法剔除残留的电塔点,结合点云高程统计进一步剔除绝缘子点,实现电力线点的精提取;最后利用同一垂直面内电力线点的高程分布特性,实现单根电力线点的快速提取。基于实际输电线路机载LiDAR数据的实验结果表明,该方法可实现电力线点的快速、高精度提取:粗分类后的电力线点中仅含约10%的非电力线点;精分类后约有2%的电力线点被误分为绝缘子点,最终各条电力线点的提取比率平均为98%以上。 相似文献
7.
针对电力巡线需求,提出一种基于机载LiDAR点云数据的电力线自动提取方法。首先采用高程滤波方法去除地面点及低矮地物点,采用顾及邻域尺度的自适应半径主成分分析法确定各点维度特性,利用维度特性从滤波后的点云中粗提取电力线点;然后根据电力线点空间分布特征,引入密度聚类算法实现单根电力线点精确提取;最后采用抛物线模型在三维空间中重构每根电力线。选取两组典型代表性的实测数据进行实验,结果表明:该方法能够从电力线走廊机载激光点云中快速提取出完整的单根电力线点,具有抗噪性强和提取精度高的特点,单根电力线提取误差率在0.06%以下,电力线提取结果能够直接应用于三维模型重建中。 相似文献
8.
机载LiDAR点云提取城市道路网的半自动方法 总被引:1,自引:0,他引:1
针对从卫星和航空正射影像中手工提取道路的方法速度慢的问题,该文基于机载LiDAR点云的高程和反射强度信息,手工选取一定量的种子点,采用区域生长法分割出初始道路区域;在填充空洞和平滑预处理后,利用细化算法提取出道路中线;根据长度阈值剔除毛刺短分支,使用自动算法和手工结合的方法消除多余通路和环形通路;并跟踪连接成矢量道路线,根据抽稀算法移除大量的小弯曲拐点,最后平滑矢量道路线成道路网。在测试复杂场景下的城市LiDAR点云后,发现提取的道路网的完整率和正确率较高。 相似文献
9.
为实现电力线走廊更加有效地巡检,本文设计了一套LiDAR点云数据中电力线自动提取与重建的方法。首先,利用改进的渐进形态学滤波剔除地面点,通过高差阈值与高程离散度分割,实现电力线点粗提取;然后,借助RANSAC直线检测,得到电力线直线模型,依靠密度检测,实现单根电力线点云精确聚类;此外,利用k-means算法完成分裂导线束间归类;最后,进行二次多项式限制的最小二乘拟合,生成电力线曲线模型。试验结果表明,使用该方法电力线点云提取的正确率达98%以上,非电力线点云误判率低至1%左右,电力线直线模型拟合误差在5 cm以下,曲线模型拟合误差在3 cm以下,完全满足实际工程需求。 相似文献
10.
为了解决地形复杂、点云密度不均匀的输电线机载激光雷达(LiDAR)点云电力线提取精度低的问题,本文根据电力线点的空间分布特征设计与实现了一套电力线提取与三维重建方法。首先,使用改进曲面拟合滤波算法与形态学开运算实现地面点、低矮植被点等的滤除;其次,以滤波处理得到点云数据为数据源,利用电力线点维度特征实现电力线点粗提取并利用密度聚类算法进行单根电力线精提取;最后,基于单根电力线提取结果进行电力线三维重建。为了对本文提出电力线提取与重建方法进行检验,使用宁波市某高压交流输变电工程中部分实测机载LiDAR点云数据进行实验,结果表明,本文方法提取28根电力线结果误差率均在0.04%以内,验证了本文方法的可靠性与实用性。 相似文献
11.
由于道路与地面在空间上表现相近,因此,仅用空间坐标无法从LiDAR数据中直接提取道路。机载激光扫描系统在获取对象三维信息的同时,也记录了激光经由反射的强度信息,因此能从空间坐标和辐射两个方面表现地物的特性。结合这两种相对独立的信息在激光扫描数据中进行道路提取,提高了提取结果的稳定性。首先利用激光扫描数据的高程滤波去除非地面点;再通过强度信息进行阈值分割得到包含干扰的初始道路区域;然后,利用两组十字剖分线检测初始区域在4个方向的狭长性与宽度一致性,使得狭长状、区域宽度较一致的道路区域同干扰区域具有不同的权值,从而提取真正的道路区域;最终通过对道路区域的细化和平滑,得到道路中心线。实验表明,该方法能够较好地在LiDAR数据中提取出道路并得到道路中心线。 相似文献
12.
基于机载激光雷达(LiDAR)点云生产高质量的数字高程模型(DEM),需要地形特征线的约束。本文针对现有断裂线提取算法仅仅考虑了地表的局部变化,错提取率高的现状,从人工解译的角度出发,引入地形开度(topographic openness)作为一种定量描述地表整体变化的地形特征,提出了基于地形开度的断裂线自动提取算法。首先将原始地面点按高程采样成距离图像,然后通过地形开度算子获取地表的主体结构变化,最后结合形态学算子和边缘提取算子提取断裂线种子点并跟踪断裂线矢量。试验结果表明,该算法无需人工干预,能够快速提取较完整的断裂线。 相似文献
13.
传统曲面约束滤波算法中,利用最小二乘拟合地形曲面易受种子点粗差影响。针对这一问题,提出基于抗差趋势面的机载激光雷达点云数据滤波方法,首先构建格网索引组织数据,引入抗差趋势面拟合合理的区块地形,通过自适应阈值的设置实现不同区域的自动灵活处理,最终滤除孤立点完善滤波结果。使用ISPRS提供的测区数据进行实验,与传统曲面拟合方法进行对比,实验结果证明,该方法较传统移动曲面拟合法能够得到更加可靠的滤波结果,具备较高实用价值。 相似文献
14.
机载LiDAR点云数据滤波是获取高精度数字高程模型的关键,也是目前LiDAR点云数据处理领域研究的重点和难点之一。提出了基于渐进三角网的机载LiDAR点云数据滤波方法,首先以规则格网和不规则三角网组织数据,采用区域分块法或数学形态学法选取种子地面点建立初始稀疏三角网,通过不断向上加密三角网提取地面点。试验结果表明,该算... 相似文献
15.
针对目前机载LiDAR点云数据存在的数据组织效率低下以及不利于查询等问题,本文提出了一种基于体元的建筑物提取算法。首先,构建体元模型实现机载LiDAR数据的真三维描述;然后,计算局部邻域曲面拟合残差,将残差最小的体元视作种子体元;最后,根据局部邻域法向量夹角准则来实现种子体元的区域增长,从而获得建筑物点。本文选取ISPRS公开的点云滤波测试数据中的8种复杂场景进行实验,实验结果表明:本文算法不仅原理简单、容易实现,而且具有较好的鲁棒性,不会受地形以及建筑物类型和尺寸的限制,Kappa系数达到80%以上,实现了复杂场景下建筑物的提取。 相似文献
16.
机载LiDAR点云航带平差方法研究 总被引:1,自引:0,他引:1
以航带平差作为系统误差消除的关键技术,提出了基于无控制三维表面匹配的方法,并用最小高程差(LZD)和最小法向距离(LND)两种算法加以实现。实验表明,LND和LZD算法的平差结果均可满足工程精度的需求;LZD较LND算法的整体计算效率偏低,但其精度较高;与商业软件TMatch的结果相比,LZD的精度和其相当,且两种方式在TMatch软件平差失败时也能成功地完成航带平差任务。 相似文献
17.
对于利用机载LiDAR点云数据提取城区道路提出一种新的思路。首先利用机载LiDAR点云数据的高程和强度属性对城区道路进行初始提取,获得初始道路点云;其次采用距离分割法和基于RANSAC算法的分割方法精化初始道路点云,有效剔除停车场等与道路相似的区域;最后采用数学形态学细化方法提取道路中心线。实验结果表明,该方法可以较正确和完整地提取城区道路。 相似文献
18.
机载激光雷达点云滤波算法分析与比较 总被引:1,自引:0,他引:1
机载点云数据在城市三维建模、DEM提取中应用广泛,而机载点云滤波是这些应用的基础。因此,这里对机载点云滤波算法设计所依据的地面特征和滤波结果的精度评定方法作了总结,并对现有滤波算法进行了分类描述。最后着重对滤波算法做了直观的对比分析,为后续点云数据滤波处理研究提供参考。 相似文献
19.
车载LiDAR数据电力线与塔杆提取方法 总被引:1,自引:0,他引:1
为了实现车载LiDAR数据中电力线和塔杆的正确提取,在分析电力线分布特点的基础之上,提出了电力线和塔杆提取的新方法。该方法首先采用高程分布直方图统计方法去除大量的地面点;然后利用kmeans聚类方法,分离得到电力线和塔杆点云,并借助塔杆点云密度特性进行塔杆定位;最后,依据电力线走向及同一电力线上点间高差较小的特点进行单根电力线的提取,并采用多项式模型对分离得到的电力线进行建模。实验结果表明,该方法能够较好地实现复杂地区的电力要素提取。 相似文献
20.
架空输电线路机载激光雷达点云电力线三维重建 总被引:3,自引:1,他引:3
电力线三维重建是机载激光雷达(LiDAR)电力巡线的一项重要任务之一。本文提出了一种基于架空输电线走廊机载LiDAR点云的电力线三维重建方法。首先,基于电塔LiDAR点和初始线路轨迹数据提取精确的电塔位置、电塔数量、线路轨迹、总档数等信息;然后,将线路分档,并确定每一档的二维空间范围和相应的电力线LiDAR点云;接着,分别对每一档的电力线LiDAR点云进行中心化投影,并利用k-means聚类将每一个电力线LiDAR点划分到相应的根;最后,利用直线和抛物线相结合的模型进行单档单根电力导线三维重建。两景试验表明,本文方法可以实现自动、高精度、正确的重建长距离架空输电线走廊电力线三维模型,重建过程中具有对电力线数目、空间配置结构、类型、粗差点、档距长度、点云不规则断裂等因素不敏感的优势。 相似文献