首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report on the structure and geometry of coronal magnetic fields inferred from the observations of meter-decimeter type III and moving type IV radio bursts, associated with a Hα flare. This is the first report of type III radio bursts from the Nançay radioheliograph after it acquired the two-dimensional multifrequency capability. Dispersion of the radio source positions with frequency suggests that open and closed field lines are considerably inclined to the radial direction which is consistent with the connectivity observed in the magnetogram. We suggest that multiple arch systems are involved in the type IV emission. From the polarization and dispersion characteristics of the type IV source, we infer that the emission is due to fundamental plasma emission.  相似文献   

2.
X-ray radiation is used to study coronal phenomena in conjunction with meter wave observations during some large solar flares. It is found that metric flare continua and moving type IV bursts are associated with gradual and long lasting (a few tens of minutes) microwave and hard X-ray emissions. The detailed temporal analysis reveals that although metric and hard X-ray sources are located at very different heights, both kinds of emission result from a common and continuous/repetitive injection of electrons in the corona. The late part of the metric event (stationary type IV burst) is only associated with soft X-ray radiation. This indicates that the mean energy of the radiating electrons is lower during stationary type IV bursts than during the earlier parts of the event.  相似文献   

3.
The speeds of coronal mass ejection events   总被引:2,自引:0,他引:2  
The outward speeds of mass ejection events observed with the white light coronagraph experiment on Skylab varied over a range extending from less than 100 km s–1 to greater than 1200 km s–1. For all events the average speed within the field of view of the experiment (1.75 to 6 solar radii) was 470 km s–1. Typically, flare associated events (Importance 1 or greater) traveled faster (775 km s–1) than events associated with eruptive prominences (330 km s–1); no flare associated event had a speed less than 360 km s–1, and only one eruptive prominence associated event had a speed greater than 600 km s–1. Speeds versus height profiles for a limited number of events indicate that the leading edges of the ejecta move outward with constant or increasing speeds.Metric wavelength type II and IV radio bursts are associated only with events moving faster than about 400 km s–1; all but two events moving faster than 500 km –1 produced either a type II or IV radio burst or both. This suggests that the characteristic speed with which MHD signals propagate in the lower (1.1 to 3 solar radii) corona, where metric wavelength bursts are generated, is about 400 to 500 km s–1. The fact that the fastest mass ejection events are almost always associated with flares and with metric wavelength type II and IV radio bursts explains why major shock wave disturbances in the solar wind at 1 AU are most often associated with these forms of solar activity rather than with eruptive prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

4.
T. E. Gergely 《Solar physics》1986,104(1):175-178
The relationship of moving type IV bursts and coronal mass ejections (CMEs) is of interest, because it may yield insights into the origin and the physics of the ejecta. We discuss the statistical association of moving type IV bursts and CMEs, and find that about one-third to one-half of the IVs occur in association with CMEs, while only about 5% of the CMEs are accompanied by moving type IVs. We also find that the mean speed of the moving IVs is smaller than the mean speed of CMEs, and conclude that the type IVs move out with the bulk of the ejecta.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

5.
A. Böhme 《Solar physics》1972,25(2):478-488
The spectral behaviour of a group of broad-band continua at metre and decametre waves is discussed. These broad-band continua are polarized in the extraordinary mode and occur during the explosive phase of some strong flares. The time behaviour of the broad-band continua and of the moving type IV bursts was already compared in a previous paper (Böhme, 1972). It is pointed out in the present paper that the broad-band continua differ from the moving type IV bursts not only regarding their time behaviour but also with reference to some spectral characteristics. Moreover, the broad-band continua differ from the moving type IV bursts by their close relation to proton events. It can be concluded that the high-energy protons are accelerated in different steps. An important secondary acceleration mechanism acts above the emission level of the type IV bursts.  相似文献   

6.
ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event   总被引:1,自引:0,他引:1  
Caroubalos  C.  Alissandrakis  C.E.  Hillaris  A.  Nindos  A.  Tsitsipis  P.  Moussas  X.  Bougeret  J.-L.  Bouratzis  K.  Dumas  G.  Kanellakis  G.  Kontogeorgos  A.  Maroulis  D.  Patavalis  N.  Perche  C.  Polygiannakis  J.  Preka-Papadema  P. 《Solar physics》2001,204(1-2):165-177
In this report we present a complex metric burst, associated with the 14 July 2000 major solar event, recorded by the ARTEMIS-IV radio spectrograph at Thermopylae. Additional space-borne and Earth-bound observational data are used, in order to identify and analyze the diverse, yet associated, processes during this event. The emission at metric wavelengths consisted of broad-band continua including a moving and a stationary type IV, impulsive bursts and pulsating structures. The principal release of energetic electrons in the corona was 15–20 min after the start of the flare, in a period when the flare emission spread rapidly eastwards and a hard X-ray peak occurred. Backward extrapolation of the CME also puts its origin in the same time interval, however, the uncertainty of the extrapolation does not allow us to associate the CME with any particular radio or X-ray signature. Finally, we present high time and spectral resolution observations of pulsations and fiber bursts, together with a preliminary statistical analysis.  相似文献   

7.
Multiple moving magnetic structures in the solar corona   总被引:1,自引:0,他引:1  
We report the study of moving magnetic structures inferred from the observations of a moving type IV event with multiple sources. The ejection contains at least two moving radio emitting loops with different relative inclinations. The radio loops are located above multiple H flare loops in an active region near the limb. We investigate the relationship between the two systems of loops. The spatial, temporal and geometrical associations between the radio emission and near surface activities suggest a scenario similar to coronal mass ejection (CME) events, although no CME observations exist for the present event. From the observed characteristics, we find that the radio emission can be interpreted as Razin suppressed optically thin gyrosynchrotron emission from nonthermal particles of energy 100, keV and density 102–105 cm–3 in a magnetic field 2 G.  相似文献   

8.
The existence of a class of fast-drift, shock-associated (SA), kilometric radio bursts which occur at the time of metric type II emission and which are not entirely the kilometric continuation of metric type III bursts has been reported previously (Cane et al., 1981). In this paper, we establish unambiguous SA event criteria for the purpose of statistically comparing SA events with conventional kilometric type III bursts. We apply these criteria to all long-duration, fast-drift bursts observed by the ISEE-3 spacecraft during a 28-month interval and find that more than 70% of the events satisfying the criteria are associated with the radio signatures of coronal shocks. If a given event in our sample is associated with a metric type II or type IV burst, it is 13 times more likely to satisfy the SA criteria than an event associated only with metric type III activity. Compared with conventional kilometric type III bursts, the characteristics of these SA events are longer duration, higher maximum intensity, and a larger number of components. Differences in these characteristics for the two classes of events are not sufficient to distinguish all SA events from conventional type III bursts. The consistent lack of reported metric type III activity during the latter part of the candidate events suggests that some of the electrons are accelerated high in the corona, at or near the altitude of the shock.  相似文献   

9.
We investigate the correlation of the occurrence of the herringbone phenomenon in type II solar radio bursts with various flare properties. We show that herringbone is strongly correlated with the intensity of the type II burst: whereas about 21% of all type II bursts show herringbone, about 60% of the most intense bursts contain herringbone. This fact can explain most of the correlations between herringbone and other properties such as intense type III bursts, type IV emission, and high type II starting frequencies. We also show that when this is taken into account, there is no need to postulate two classes of type II burst in order to explain why there appears to be a difference in herringbone occurrence between the set of type II bursts associated with the leading edges of coronal mass ejections, and those not so associated. We argue that the data are consistent with the idea that all coronal type II bursts are due to blast waves from flares.  相似文献   

10.
The limb event 1982 Jan 22 with Type III + V and Type II bursts and Ha mass ejection is described. The bursts in short dm and cm waves are discussed in terms of the flux rate — time curve. For one main ejection, we find a magnetic field of ~12 G, a mass of ~1038 electrons or ~1014g and an energy of 8 × 1029 erg. We estimate the total energy of this event to be 1030 erg.  相似文献   

11.
Takeo Kosugi 《Solar physics》1976,48(2):339-356
The radio observations of type II–IV bursts on December 14, 1971 are analyzed. These radio events were associated with a H-spray or eruptive prominence, and later followed by several compact moving clouds observed with the NRL white-light coronagraph aboard OSO-7. There was also observed a diffuse expanding cloud behind the compact moving clouds.From the comparison of the interferometer observation of the bursts with the optical observation, it is strongly suggested that the compact moving clouds were likely to be the optical counterparts of the sources of moving type IV radio emission. This fact suggests that the magnetic bubbles were really produced in the flare process. The frequency-drift of the first group of type II bursts was so rapid, that we could neither identify the type II shock with the leading edge of the diffuse expanding cloud nor interpret it as the piston-driven shock of the latter. Because of the uncertainty of the velocities of the compact clouds due to the projection effect, the possibility that the type II shock was the piston-driven shock of the compact clouds cannot be excluded. Nevertheless we suggest that the type II shock was a blast type MHD shock and had no direct physical relation to the flare-associated mass-ejection processes. The relation between the type II–IV bursts and the interplanetary shock is also discussed.  相似文献   

12.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

13.
We have analyzed radio type IV bursts in the interplanetary (IP) space at decameter–hectometer (DH) wavelengths to determine their source origin and a reason for the observed directivity. We used radio dynamic spectra from the instruments on three different spacecraft, STEREO-A, Wind, and STEREO-B, which were located approximately 90 degrees apart from each other in 2011?–?2012, and thus gave a 360 degree view of the Sun. The radio data were compared to white-light and extreme ultraviolet (EUV) observations of flares, EUV waves, and coronal mass ejections (CMEs) in five solar events. We find that the reason that compact and intense DH type IV burst emission is observed from only one spacecraft at a time is the absorption of emission in one direction and that the emission is blocked by the solar disk and dense corona in the other direction. The geometry also makes it possible to observe metric type IV bursts in the low corona from a direction where the higher-located DH type IV emission is not detectable. In the absorbed direction we found streamers, and they were estimated to be the locations of type II bursts, caused by shocks at the CME flanks. The high-density plasma was therefore most probably formed by shock–streamer interaction. In some cases, the type II-emitting region was also capable of stopping later-accelerated electron beams, which were visible as type III bursts that ended near the type II burst lanes.  相似文献   

14.
Flares and coronal mass ejections (CMEs) contribute to the acceleration and propagation of solar energetic particles (SEP) detected in the interplanetary space, but the exact roles of these phenomena are yet to be understood. We examine two types of energetic particle tracers related with 15 CME-less flares that emit bright soft X-ray bursts (GOES X class): radio emission of flare-accelerated electrons and in situ measurements of energetic electrons and protons near 1 AU. The CME-less flares are found to be vigorous accelerators of microwave-emitting electrons, which remain confined in low coronal structures. This is shown by unusually steep low-frequency microwave spectra and by lack of radio emission from the middle and high corona, including dm?–?m wave type IV continua and metre-to-hectometre type III bursts. The confinement of the particles accelerated in CME-less flares agrees with the magnetic field configuration of these events inferred by others. Two events produced isolated metric type II bursts revealing coronal shock waves. None of the seven flares in the western hemisphere was followed by enhanced particle fluxes in the GOES detectors, but one, which was accompanied by a type II burst, caused a weak SEP event detected at SoHO and ACE. Three of the CME-less flares were followed within some hours by SEP-associated flares from the same active region. These SEP-producing events were clearly distinct from the CME-less ones by their association with fast and broad CMEs, dm?–?m wave radio emission, and intense DH type III bursts. We conclude that radio emission at decimetre and longer waves is a reliable indication that flare-accelerated particles have access to the high corona and interplanetary space. The absence of such emission can be used as a signal that no SEP event is to be expected despite the occurrence of a strong soft X-ray burst.  相似文献   

15.
Solar energetic particles (SEPs) detected in space are statistically associated with flares and coronal mass ejections (CMEs). But it is not clear how these processes actually contribute to the acceleration and transport of the particles. The present work addresses the question why flares accompanied by intense soft X-ray bursts may not produce SEPs detected by observations with the GOES spacecraft. We consider all X-class X-ray bursts between 1996 and 2006 from the western solar hemisphere. 21 out of 69 have no signature in GOES proton intensities above 10 MeV, despite being significant accelerators of electrons, as shown by their radio emission at cm wavelengths. The majority (11/20) has no type III radio bursts from electron beams escaping towards interplanetary space during the impulsive flare phase. Together with other radio properties, this indicates that the electrons accelerated during the impulsive flare phase remain confined in the low corona. This occurs in flares with and without a CME. Although GOES saw no protons above 10 MeV at geosynchronous orbit, energetic particles were detected in some (4/11) confined events at Lagrangian point L1 aboard ACE or SoHO. These events have, besides the confined microwave emission, dm-m wave type II and type IV bursts indicating an independent accelerator in the corona. Three of them are accompanied by CMEs. We conclude that the principal reason why major solar flares in the western hemisphere are not associated with SEPs is the confinement of particles accelerated in the impulsive phase. A coronal shock wave or the restructuring of the magnetically stressed corona, indicated by the type II and IV bursts, can explain the detection of SEPs when flare-accelerated particles do not reach open magnetic field lines. But the mere presence of these radio signatures, especially of a metric type II burst, is not a sufficient condition for a major SEP event.  相似文献   

16.
We report on the results of observations of a type IV burst made by the Ukrainian Radio interferometer of the Academy of Sciences (URAN-2) in the frequency range 22?–?33 MHz. The burst is associated with a coronal mass ejection (CME) initiated by a behind-the-limb active region (N05E151) and was also observed by the Nançay Decameter Array (NDA) radio telescope in the frequency band 30?–?60 MHz. The purpose of the article is the determination of the source of this type IV burst. After analysis of the observational data obtained with the URAN-2, the NDA, the Solar-Terrestrial Relations Observatory (STEREO) A and B spacecraft, and the Solar and Heliospheric Observatory (SOHO) spacecraft, we come to the conclusion that the source of the burst is the core of a behind-the-limb CME. We conclude that the radio emission can escape the center of the CME core at a frequency of 60 MHz and originates from the periphery of the core at a frequency of 30 MHz that is due to occultation by the solar corona at the corresponding frequencies. We find plasma densities in these regions assuming the plasma mechanism of radio emission. We show that the frequency drift of the start of the type IV burst is governed by an expansion of the CME core. The type III bursts that were observed against this type IV burst are shown to be generated by fast electrons propagating through the CME core plasma. A type II burst was registered at frequencies of 44?–?64 MHz and 3?–?16 MHz and was radiated by a shock with velocities of about \(1000~\mbox{km}\,\mbox{s}^{-1}\) and \(800~\mbox{km}\,\mbox{s}^{-1}\), respectively.  相似文献   

17.
王德焴 《天文学报》2004,45(2):168-175
为解释太阳运动IV型射电爆发的相干辐射机制提出一个理论模型.从耀斑中产生的高能电子,可以被扩展上升的太阳磁流管俘获.在磁流管顶部,这些高能电子的速度分布形成为类束流速度分布,激发束流等离子体的不稳定性,并且主要直接放大O模电磁波.不稳定性增长率敏锐地依赖了日冕等离子体参数,fpe/fce和射束温度Tb,这能定性解释在太阳运动IV型射电爆发中观测到的高亮温度和高偏振度,以及宽频谱的特性.  相似文献   

18.
Maia  D.  Pick  M.  Kerdraon  A.  Howard  R.  Brueckner  G. E.  Michels  D. J.  Paswaters  S.  Schwenn  R.  Lamy  P.  Llebaria  A.  Simnett  G.  Aurass  H. 《Solar physics》1998,181(1):121-132
The development of a coronal mass ejection on 1 July 1996 has been analyzed by comparing the observations of the LASCO/SOHO coronagraph with those of the Nançay radioheliograph. This comparison brings new insight and very useful diagnosis for the study of CME events. It is shown that the initial instability took place in a small volume located above an active region and that the occurrence of short radio type III bursts implies a triggering process due to magnetic field interactions. The subsequent spatial and temporal evolution of the radio emission strongly suggests that the large scale structure becomes unstable within the first minute of the event.  相似文献   

19.
B. Vršnak  S. Lulić 《Solar physics》2000,196(1):157-180
The formation and evolution of a large amplitude MHD perturbation propagating perpendicular to the magnetic field in a perfectly conducting low plasma is studied. The perturbation is generated by an abrupt expansion of the source region. Explicit expressions for the time and the distance needed for the transformation of the perturbation's leading edge into a shock wave are derived. The results are applied to coronal conditions and the dynamic spectra of the radio emission excited by the shock are synthesized, reproducing metric and kilometric type II bursts. The features corresponding to the metric type II burst precursor and the moving type IV burst in the case of kilometric type II bursts are identified. A specific radio signature that is sometimes observed at the onset of a metric type II burst is found to appear immediately before the shock wave formation due to the associated growth of the magnetic field gradient. Time delays and starting frequencies of bursts' onsets are calculated and presented as a function of the impulsiveness of the source-region expansion, using different values of the ambient Alfvén velocity and various time profiles of the expansion velocity. The results are confronted with the observations of metric and kilometric type II solar radio bursts.  相似文献   

20.
An investigation is made to determine the relationship between a coronal mass ejection (CME) and the characteristics of associated metre-wave activity. It is found that (1) the CME width and leading edge velocity can be highly influential in determining the intensity, spectral complexity and frequency coverage of both type II and continuum bursts; (2) the presence of a CME is possibly a necessary condition for the production of a metric continuum event and (3) metric continuum bursts as well as intense, complex type II events are preferentially associated with strong, long lasting soft X-ray events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号