首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sauwald Zone, located at the southern rim of the Bohemian Massif in Upper Austria, belongs to the Moldanubian Unit. It exposes uniform biotite + plagioclase ± cordierite paragneisses that formed during the post-collisional high-T/low-P stage of the Variscan orogeny. Rare metapelitic inlayers contain the mineral assemblage garnet + cordierite + green spinel + sillimanite + K-feldspar + plagioclase + biotite + quartz. Mineral chemical and textural data indicate four stages of mineral growth: (1) peak assemblage as inclusions in garnet (stage 1): garnet core + cordierite + green spinel + sillimanite + plagioclase (An35–65); (2) post-peak assemblages in the matrix (stages 2, 3): cordierite + spinel (brown-green and brown) ± sillimanite ± garnet rim + plagioclase (An10–45); and (3) late-stage growth of fibrolite, muscovite and albite (An0–15) during stage 4. Calculation of the P–T conditions of the peak assemblage (stage 1) yields 750–840°C, 0.29–0.53 GPa and for the stage 2 matrix assemblage garnet + cordierite + green spinel + sillimanite + plagioclase 620–730°C, 0.27–0.36 GPa. The observed phase relations indicate a clockwise P–T path, which terminates below 0.38 GPa. The P–T evolution of the Sauwald Zone and the Monotonous Unit are very similar, however, monazite ages of the former are younger (321 ± 9 Ma vs. 334 ± 1 Ma). This indicates that high-T/low-P metamorphism in the Sauwald Zone was either of longer duration or there were two independent phases of late-Variscan low-P/high-T metamorphism in the Moldanubian Unit.  相似文献   

2.
The Priest pluton contact aureole in the Manzano Mountains, central New Mexico preserves evidence for upper amphibolite contact metamorphism and localized retrograde hydrothermal alteration associated with intrusion of the 1.42 Ga Priest pluton. Quartz–garnet and quartz–sillimanite oxygen isotope fractionations in pelitic schist document an increase in the temperatures of metamorphism from 540 °C, at a distance of 1 km from the pluton, to 690 °C at the contact with the pluton. Comparison of calculated temperature estimates with one‐dimensional thermal modelling suggests that background temperatures between 300 and 350 °C existed at the time of intrusion of the Priest pluton. Fibrolite is found within 300 m of the Priest pluton in pelitic and aluminous schist metamorphosed at temperatures >580 °C. Coexisting fibrolite and garnet in pelitic schist are in oxygen isotope equilibrium, suggesting these minerals were stable reaction products during peak metamorphism. The fibrolite‐in isograd is coincident with the staurolite‐out isograd in pelitic schist, and K‐feldspar is not observed with the first occurrence of fibrolite. This suggests that the breakdown of staurolite and not the second sillimanite reaction controls fibrolite growth in staurolite‐bearing pelitic schist. Muscovite‐rich aluminous schist locally preserves the Al2SiO5 polymorph triple‐point assemblage – kyanite, andalusite and fibrolite. Andalusite and fibrolite, but not kyanite, are in isotopic equilibrium in the aluminous schist. Co‐nucleation of fibrolite and andalusite at 580 °C in the presence of muscovite and absence of K‐feldspar suggests that univariant growth of andalusite and fibrolite occurred. Kyanite growth occurred during an earlier regional metamorphic event at a temperature nearly 80 °C lower than andalusite and fibrolite growth. Quartz–muscovite fractionations in hydrothermally altered pelitic schist and quartzite are small or negative, suggesting that late isotopic exchange between externally derived fluids and muscovite, but not quartz, occurred after peak contact metamorphism and that hydrothermal alteration in pelitic schist and quartzite occurred below the closure temperature of oxygen self diffusion in quartz (<500 °C).  相似文献   

3.
The Ross of Mull pluton consists of granites and granodioritesand intrudes sediments previously metamorphosed at amphibolitefacies. The high grade and coarse grain size of the protolithis responsible for a high degree of disequilibrium in many partsof the aureole and for some unusual textures. A band of metapelitecontained coarse garnet, biotite and kyanite prior to intrusion,and developed a sequence of textures towards the pluton. InZone I, garnet is rimmed by cordierite and new biotite. In ZoneII, coarse kyanite grains are partly replaced by andalusite,indicating incomplete reaction. Coronas of cordierite + muscovitearound kyanite are due to reaction with biotite. In the higher-gradeparts of this zone there is complete replacement of kyaniteand/or andalusite by muscovite and cordierite. Cordierite chemistryindicates that in Zone II the stable AFM assemblage (not attained)would have been cordierite + biotite + muscovite, without andalusite.The observed andalusite is therefore metastable. Garnet is unstablein Zone II, with regional garnets breaking down to cordierite,new biotite and plagioclase. In Zone III this breakdown is welladvanced, and this zone marks the appearance of fibrolite andK-feldspar in the groundmass as a result of muscovite breakdown.Zone IV shows garnet with cordierite, biotite, sillimanite,K-feldspar and quartz. Some garnets are armoured by cordieriteand are inferred to be relics. Others are euhedral with Mn-richcores. For these, the reaction biotite + sillimanite + quartz garnet + cordierite + K-feldspar + melt is inferred. Usinga petrogenetic grid based on the work of Pattison and Harte,pressure is estimated at 3·2 kbar, and temperature atthe Zone II–III boundary at 650°C and in Zone IV asat least 750°C. KEY WORDS: contact metamorphism; disequilibrium  相似文献   

4.
The granulites of the Saxon Granulite Massif equilibrated athigh pressure and ultrahigh temperature and were exhumed inlarge part under near-isothermal decompression. This raisesthe question of whether P–T–t data on the peak metamorphismmay still be retrieved with confidence. Felsic and mafic granuliteswith geochronologically useful major and accessory phases haveprovided a basis to relate P–T estimates with isotopicages presented in a companion paper. The assemblage garnet +clinopyroxene in mafic granulite records peak temperatures of1010–1060°C, consistent with minimum estimates ofaround 967°C and 22·3 kbar obtained from the assemblagegarnet + kyanite + ternary feldspar + quartz in felsic granulite.Multiple partial overprint of these assemblages reflects a clockwiseP–T evolution. Garnet and kyanite in the felsic granulitewere successively overgrown by plagioclase, spinel + plagioclase,sapphirine + plagioclase, and biotite + plagioclase. Most ofthis overprinting occurred within the stability field of sillimanite.Garnet + clinopyroxene in the mafic granulite were replacedby clinopyroxene + amphibole + plagioclase + magnetite. Thehigh P–T conditions and the absence of thermal relaxationfeatures in these granulites require a short-lived metamorphismwith rapid exhumation. The ages of peak metamorphism (342 Ma)and shallow-level granitoid intrusions (333 Ma) constrain thetime span for the exhumation of the Saxon granulites to  相似文献   

5.
通过对聂拉木高喜马拉雅结晶岩系石榴子石带-十字石带-蓝晶石带-夕线石带倒转变质的研究,认为除夕线石带以外的其它变质带主要由固相变质反应形成。夕线石的出现并非蓝晶石或十字石带递增变质所致。"倒转变质"不应包括所谓的夕线石带。实际上,夕线石化与深熔作用之后的溶液(或熔体)活动更为密切。时间顺序上应是递增变质作用及分带→深熔作用→夕线石化,夕线石的出现不是深熔作用的开始,而是深熔作用的结束。夕线石的形成主要与变形作用过程中黑云母和/或钾长石的分解及碱(土)金属组分的迁移有关,关键在于溶液(或熔体)组分沿裂隙迁移过程中发生的组分逐步沉淀,最早沉凝的Al、Si组分形成夕线石和石英,之后陆续有其它的组分的结晶;细夕线石粗粒化即进一步转化形成柱状夕线石的同时形成蠕英结构和斜长石生长边。夕线石化可能与深熔花岗(片麻)岩的上升过程有关。  相似文献   

6.
Oxygen‐isotope compositions of kyanite, andalusite, prismatic sillimanite and fibrolite from the Proterozoic terrane in the Truchas Mountains, New Mexico differ from one another, suggesting that these minerals did not grow in equilibrium at the Al2SiO5 (AS) polymorph‐invariant point as previously suggested. Instead, oxygen‐isotope temperature estimates indicate that growth of kyanite, andalusite and prismatic sillimanite occurred at c. 575, 615 and 640 °C respectively. Temperature estimates reported in this paper are interpreted as those of growth for the different AS polymorphs, which are not necessarily the same as peak metamorphic temperatures for this terrane. Two distinct temperature estimates of c. 580 °C and c. 700 °C are calculated for most fibrolite samples, with two samples yielding clear evidence of quartz‐fibrolite oxygen‐isotope disequilibrium. These data indicate that locally, and potentially regionally, oxygen‐isotope disequilibrium between quartz and fibrolite may have resulted from rapid fibrolite nucleation. Pressures of mineral growth that were extrapolated from oxygen‐isotope thermometry results and calculated using petrological constraints suggest that kyanite and one generation of fibrolite grew during M1 at 5 kbar, and that andalusite, prismatic sillimanite and a second generation of fibrolite grew during M2 at 3.5 kbar. M1 and M2 therefore represent two distinct metamorphic events that occurred at different crustal levels. The ability of the AS polymorphs to retain δ18O values of crystallization make these minerals ideal to model prograde‐growth histories of mineral assemblages in metamorphic terranes and to understand more clearly the pressure–temperature histories of multiple metamorphic events.  相似文献   

7.
Sapphirine-bearing orthopyroxene-kyanite (Opx-Ky) and -sillimanite (Opx-Sil) granulites have been found in the Lewisian complex of South Harris in northwest Scotland. In the Opx-Ky granulites, orthopyroxene and kyanite are intergrown in a stable mineral assemblage, which indicates metamorphic condition at 800–900 °C >12 kbar. Sillimanite inclusions within orthopyroxene suggest that sillimanite formed earlier; conditions are estimated at 950 ± 30 °C at 10 kbar from orthopyroxene isopleths for aluminous orthopyroxene (<9.7 wt%). In the Opx-Sil granulite, the orthopyroxene + sillimanite + garnet + sapphirine assemblage is stable at the peak metamorphic stages, indicating P-T condition of 930–950 °C, >8 kbar according to the FMAS petrogenetic grid, and similar conditions were obtained by using orthopyroxene-garnet geothermobarometers. The two types of orthopyroxene-aluminosilicate granulites indicate that the peak metamorphic conditions were over 900 °C, compatible with ultra-high temperature metamorphism. As accessory sapphirine occurs in several assemblages and with different compositions; it is interpreted to be formed at different stages of the metamorphism. These granulites were formed during Early Proterozoic high-grade metamorphism due to the emplacement of the South Harris Igneous Complex at c. 2170–1870 Ma, and are not related to the major metamorphic episode of the Badcallian/Inverian metamorphism at c. 2700–2500 Ma in the mainland Lewisian. Received: 17 July 1998 / Accepted 8 March 1999  相似文献   

8.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

9.
Al2SiO5 reaction textures in aluminous schist and quartziteof the northern Picuris range, north-central New Mexico, recorda paragenetic sequence of kyanite to sillimanite to andalusite,consistent with a clockwise PT loop, with minor decompressionnear the Al2SiO5 triple-point. Peak metamorphic temperaturesare estimated at 510–525°C, at 4·0–4·2kbar. Kyanite and fibrolite are strongly deformed; some prismaticsillimanite, and all andalusite are relatively undeformed. Monaziteoccurs as inclusions within kyanite, mats of sillimanite andcentimetre-scale porphyroblasts of andalusite, and is typicallyaligned subparallel to the dominant regional foliation (S0/S1or S2) and extension lineation (L1). Back-scatter electron imagesand X-ray maps of monazite reveal distinct core, intermediateand rim compositional domains. Monazite–xenotime thermometryfrom the intermediate and rim domains yields temperatures of405–470°C (±50°C) and 500–520°C(±50°C), respectively, consistent with the progradeto peak metamorphic growth of monazite. In situ, ion microprobeanalyses from five monazites yield an upper intercept age of1417 ± 9 Ma. Near-concordant to concordant analyses yield207Pb–206Pb ages from 1434 ± 12 Ma (core) to 1390± 20 Ma (rim). We find no evidence of older regionalmetamorphism related to the 1650 Ma Mazatzal Orogeny. KEY WORDS: Al2SiO5; metamorphism; monazite; thermochronometry; triple-point  相似文献   

10.
 The Middle Miocene Tobe hornfels in the Sanbagawa metamorphic belt, western Shikoku, southwest Japan, is characterized by an abnormally steep metamorphic gradient compared with other hornfelses associated with intrusive bodies. The basic hornfels, originally Sanbagawa greenschist rocks, is divided into the following three metamorphic zones: plagioclase, hornblende, and orthopyroxene. The plagioclase zone is defined by the appearance of calcic plagioclase, the hornblende zone by the assemblage of hornblende+calcic plagioclase+quartz, and the orthopyroxene zone is characterized by the assemblage of orthopyroxene + clinopyroxene + plagioclase + quartz. Calcic amphibole compositions change from actinolite to hornblende as a result of the continuous reactions during prograde metamorphism. Petrographical and thermometric studies indicate a metamorphic temperature range of 300–475°C for the plagioclase zone, 475–680°C for the hornblende zone, and 680–730°C for the orthopyroxene zone. The temperature gradient based on petrological studies is approximately 5°C/m, which is unusually high. Geological and petrological studies demonstrate that the hornfelses were formed by the focusing of high-temperature fluids through zones of relatively high fracture permeability. The steep thermal gradient in the Tobe hornfels body is consistent with a large fluid flux, greater than 8.3 × 10–7 m3 m–2S–1, over the relatively short duration of metamorphism, approximately 100 years. Received: 10 October 1995 / Accepted: 28 May 1996  相似文献   

11.
Microprobe analyses of the minerals from an unusual chloritoid-staurolite-garnet (+ muscovite + quartz + ilmenite) assemblage from the sillimanite (fibrolite) zone of Sini, India are presented and the petrological significance of the paragenesis is discussed. The X Mg in the different minerals from the chloritoid-staurolite-bearing rock varies in the order, muscovite > chlorite > chloritoid > staurolite > garnet > ilmenite, and from the associated sillimanite-bearing schists: muscovite > biotite > staurolite > garnet rim > garnet core > ilmenite. A graphical representation of the mineral compositions in an AFM projection displays a consistent topology if the effects of non-AFM components such as Zn in the staurolite and Mn in the garnet are taken into account. Petrographic and mineralogical data are consistent with a prograde formation of the chloritoid-staurolite-garnet assemblage. It is suggested that the paragenesis has been formed at similar PT conditions to the associated sillimanite (fibrolite)-staurolite-garnet-mica schists. These conditions are estimated to be 600–625°C/6±0.5 Kb.  相似文献   

12.
I. A. Tararin 《Petrology》2008,16(2):193-209
Geological, mineralogical, and geothermobarometric data testify that the regional metamorphism of the terrigenous protolith of the Kolpakovskaya Series, which composes the stratigraphic basement of the Kamchatka Median Crystalline Massif, corresponded to the kyanite mineral subfacies of the amphibolite facies at temperatures of 560–660°C and pressures of 5.9–6.9 kbar. This metamorphism predetermined wide kyanite development in high-Al garnet-biotite plagiogneisses. The younger granitization and migmatization of the plagiogneisses took place at a decrease in the pressure (depth), as follows from the textures of kyanite reaction replacement by andalusite in both the metamorphic rocks and the vein synmetamorphic granitoids and pegmatites. The temperature of the granitization and migmatization processes in the plagiogneisses was estimated at 620–650°C, and the pressure was evaluated at 1.9–3.0 kbar. Acid leaching that accompanied the granitization and migmatization processes resulted in the intense replacement of biotite by sillimanite (fibrolite) and, to a lesser degree, muscovite in the metamorphic and vein magmatic rocks. The highest temperature orthopyroxene-cordierite-biotite-orthoclase-plagioclase-quartz mineral assemblages were determined to have been formed in the Kolpakovskaya Series at a temperature of 830–840°C not by the regional metamorphism but in contact aureoles around gabbro-granitoid intrusions of the Lavkinskii intrusive complex of Oligocene-Miocene age in garnet-biotite and kyanite-garnet-biotite plagiogneisses of the amphibolite facies and cannot thus be regarded as evidence of an early granulite stage in the metamorphism of these rocks.  相似文献   

13.
Pegmatoid segregations containing three polymorphous Al2SiO5 modifications have been revealed in metamorphic rocks of the Tsel block localized in the Hercynian belt on the southern flank of Mongolian Altay. Petrographic study showed a successive substitution of polymorphs in the sequence: andalusite–kyanite–fibrolite–sillimanite. Estimated parameters of the host-rock metamorphism indicate that the mineral assemblage of pegmatoid veins formed at two successive stages of metamorphism: andalusite-sillimanite and kyanite-sillimanite. It is suggested that the transformation of Al2SiO5 from one to another polymorphous modification occurs by the ion exchange mechanism with the participation of muscovite.  相似文献   

14.
Ailaoshan orogenic belt located at the northeastern margin of the Indochina block, southeastern Tibet, was formed by subduction and collision between the Indochina and South China blocks in Triassic and slip shearing resulted from the extrusion of the Indochina block in Cenozoic. The high‐pressure pelitic granulite is located at the southeastern margin of the Ailaoshan metamorphic belt, occurs as a slice of about 500~700m in thickness, consists of garnet, sillimanite, feldspar, biotite and quartz with accessory of kyanite, sapphirine, spinel, rutile, ilmenite, zircon and apatite. The petrography and mineral chemistry show that the high‐pressure pelitic granulite had suffered three stages of metamorphism: 1) the prograde metamorphism recorded by the mineral assemblage of garnet, kyanite, feldspar, biotite and rutile; 2) the peak metamorphism shown by the mineral assemblage of garnet, sillimanite, sapphirine, ternary feldspar, K‐feldspar, plagioclase, biotite, spinel, quartz, rutile and zircon mantle; 3) the retrograde metamorphism recorded by the mineral assemblage of biotite, muscovite, plagioclase, quartz and zircon rim. Zircon SHRIMP U‐Pb dating indicates that the protolith of the pelite granulite was deposited before 336 Ma, the prograde to peak metamorphism occurred at P‐T conditions of ≥10.4 kbar at 850~919 °C in 235 Ma, and the retrograde metamorphism occurred at the P‐T condition of 3.5~3.9 kbar at 572~576 °C until to 33 Ma. They are consistent with the times of Indochina separated from Gondwanaland during late Paleozoic, the amalgamation of the south China and Indochina blocks during the Triassic, and the sinistral slip‐shearing since the Early Cenozoic respectively. It is inferred that that the sedimentary rock was subducted to the lower continental crust (30 km) and suffered granulite‐facies metamorphism due to the collision during Indosinian, then exhumed quickly to middle‐upper crust (10–12km) and superimposed retrograde metamorphism since the Cenozoic.  相似文献   

15.
Abstract Contact metamorphism adjacent to a porphyritic quartz-monzodiorite at Kentucky, New South Wales, Australia has produced hornfelses in porphyritic leucogranite at a peak temperature of about 650–700° C and a maximum confining pressure of about 2 kbar (200 MPa). A gradation appears to exist from normal slightly peraluminous to modified strongly peraluminous metagranite hornfelses, which have also been enriched in sulphur. The strongly peraluminous hornfelses, containing cordierite, andalusite, sillimanite, biotite, pyrite and pyrrhotite, retain residual porphyritic igneous microstructures. These rocks appear to have been formed by leaching of base cations, during and possibly just before the contact metamorphism. Folia of fibrous sillimanite anastomose between lenticular grains of quartz and feldspar and truncate igneous zoning in plagioclase grains, suggesting that cation leaching and solution transfer occurred during growth of the sillimanite. Fibrous sillimanite also grew in grain boundaries of polygonal aggregates formed by the contact metamorphism. Therefore, at least some of the cation leaching appears to have occurred at the highest metamorphic grade. Metasandstones that are locally strongly peraluminous adjacent to the monzodiorite stock also, have probably undergone similar leaching.  相似文献   

16.
Connemara pelites show progressive metamorphism from stauroliteto upper sillimanite zones and possess low Mg/(Fe + Mg) values,typically 0.30 to 0.35 from about 100 analyses. As a consequenceof their composition, many sillimanite zone pelites lack bothmuscovite and K-feldspar. Staurolite, garnet, biotite, muscovite,feldspars and iron ores have been microprobe analysed in 48samples. Assemblages, textures and mineral compositions indicatethat metamorphism followed a sequence of continuous and discontinuousreactions with systematic variations in mineral Mg/(Mg + Fe)as predicted by theory. Contrary to some common assumptions,most reaction takes place along divariant equilibria; univariantreactions are seldom reached because reactants such as chloriteor muscovite are first consumed along divariant curves. Pelitepetrogenetic grids showing univariant curves can only indicatelimits to natural assemblages; they typically do not show whichreactions have actually taken place. Physical conditions of metamorphism have been calculated bya variety of means; temperatures range from 550° for thestaurolite zone to 650° for the upper silimanite zone, withthe first appearance of sillimanite near 580°. An earlykyanite-staurolite metamorphism at pressures above about 5 kbwas followed by a steepening of the thermal gradient leadingto regional cordierite and andalusite. This was probably accompaniedby uplift with pressures of around 4 kb for roeks near the sillimanite-inisograd.  相似文献   

17.
Petrology and phase equilibria of rocks from two profiles inEastern Nepal from the Lesser Himalayan Sequences, across theMain Central Thrust Zone and into the Greater Himalayan Sequencesreveal a Paired Metamorphic Mountain Belt (PMMB) composed oftwo thrust-bound metamorphic terranes of contrasting metamorphicstyle. At the higher structural level, the Greater HimalayanSequences experienced high-T/moderate-P metamorphism, with ananticlockwise P–T path. Low-P inclusion assemblages ofquartz + hercynitic spinel + sillimanite have been overgrownby peak metamorphic garnet + cordierite + sillimanite assemblagesthat equilibrated at 837 ± 59°C and 6·7 ±1·0 kbar. Matrix minerals are overprinted by numerousmetamorphic reaction textures that document isobaric coolingand re-equilibrated samples preserve evidence of cooling to600 ± 45°C at 5·7 ±1·1 kbar.Below the Main Central Thrust, the Lesser Himalayan Sequencesare a continuous (though inverted) Barrovian sequence of high-P/moderate-Tmetamorphic rocks. Metamorphic zones upwards from the loweststructural levels in the south are: Zone A: albite + chlorite + muscovite ± biotite; Zone B: albite + chlorite + muscovite + biotite + garnet; Zone C: albite + muscovite + biotite + garnet ± chlorite; Zone D: oligoclase + muscovite + biotite + garnet ± kyanite; Zone E: oligoclase + muscovite + biotite + garnet + staurolite+ kyanite; Zone F: bytownite + biotite + garnet + K-feldspar + kyanite± muscovite; Zone G: bytownite + biotite + garnet + K-feldspar + sillimanite+ melt ± kyanite. The Lesser Himalayan Sequences show evidence for a clockwiseP–T path. Peak-P conditions from mineral cores average10·0 ± 1·2 kbar and 557 ± 39°C,and peak-metamorphic conditions from rims average 8·8± 1·1 kbar and 609 ± 42°C in ZonesD–F. Matrix assemblages are overprinted by decompressionreaction textures, and in Zones F and G progress into the sillimanitefield. The two terranes were brought into juxtaposition duringformation of sillimanite–biotite ± gedrite foliationseams (S3) formed at conditions of 674 ± 33°C and5·7 ± 1·1 kbar. The contrasting averagegeothermal gradients and P–T paths of these two metamorphicterranes suggest they make up a PMMB. The upper-plate positionof the Greater Himalayan Sequences produced an anticlockwiseP–T path, with the high average geothermal gradient beingpossibly due to high radiogenic element content in this terrane.In contrast, the lower-plate Lesser Himalayan Sequences weredeeply buried, metamorphosed in a clockwise P–T path anddisplay inverted isograds as a result of progressive ductileoverthrusting of the hot Greater Himalayan Sequences duringprograde metamorphism. KEY WORDS: thermobarometry; P–T paths; Himalaya; metamorphism; inverted isograds; paired metamorphic belts  相似文献   

18.
Metapelites from the southern aureole of the Vedrette di Ries tonalite (eastern Alps) were variably overprinted by contact and earlier regional metamorphic events during pre-Alpine and Alpine metamorphic cycles. In these rocks, starting from a primary garnet mica-schist (garnet stage), a complex sequence of transformations, affecting the site of the garnet, has been recognized. In the outermost part of the aureole, the primary garnet sites are occupied by nodules of kyanite (kyanite stage). Closer to the tonalite, kyanite is replaced by staurolite (staurolite stage), which in turn is pseudomorphed by muscovite (muscovite stage). The aggregates of kyanite do not overgrow garnet directly; they post-date a stage (fibrolite stage) represented by the pseudomorphic alteration of garnet into fibrolitic sillimanite plus biotite. A further sericite stage is likely to have occurred between the fibrolite and kyanite stages. Preservation of the sub-spherical garnet shape during all these transformations and persistence of mineralogical and textural relicts from earlier stages were favoured by the very low strain experienced by the rocks since the garnet stage. The textural sequence is in agreement with the metamorphic history of this part of the Austroalpine basement of the Eastern Alps: the garnet and fibrolite stages, and the coeval main foliation of the samples, are referred to the high-grade Hercynian metamorphism; the kyanite stage to the Eo-Alpine metamorphism; the staurolite and muscovite stages to the Oligocene contact metamorphism. It is suggested that kyanite growth as microgranular aggregates took place in polymetamorphic rocks where static, high- P /low- T  metamorphism overprinted high- T  assemblages that contained sillimanite or andalusite.  相似文献   

19.
A detailed study based on textural observations combined with microanalysis [back scattered electron imaging (BSE) and electron microprobe analysis (EMPA)] and microstructural data transmission electron microscopy (TEM) has been made of K-feldspar micro-veins along quartz–plagioclase phase and plagioclase–plagioclase grain boundaries in granulite facies, orthopyroxene–garnet-bearing gneiss's (700–825 °C, 6–8 kbar) from the Val Strona di Omegna, Ivrea–Verbano Zone, northern Italy. The K-feldspar micro-veins are commonly associated with quartz and plagioclase and are not found in quartz absent regions of the thin section. This association appears to represent a localised reaction texture resulting from a common high grade dehydration reaction, namely: amphibole + quartz = orthopyroxene + clinopyroxene + plagioclase + K-feldspar + H2O, which occurred during the granulite facies metamorphism of these rocks. There are a number of lines of evidence for this. These include abundant Ti-rich biotite, which was apparently stable during granulite facies metamorphism, and total lack of amphibole, which apparently was not. Disorder between Al and Si in the K-feldspar indicates crystallisation at temperatures >500 °C. Myrmekite and albitic rim intergrowths in the K-feldspar along the K-feldspar–plagioclase interface could only have formed at temperatures >500–600 °C. Symplectic intergrowths of albite and Ca-rich plagioclase between these albitic rim intergrowths and plagioclase suggest a high temperature grain boundary reaction, which most likely occurred at the start of decompression in conjunction with a fluid phase. Relatively high dislocation densities (>2 × 109 to 3 × 109/cm2) in the K-feldspar suggest plastic deformation at temperatures >500 °C. We propose that this plastic deformation is linked with the extensional tectonic environment present during the mafic underplating event responsible for the granulite facies metamorphism in these rocks. Lastly, apparently active garnet grain rims associated with side inclusions of K-feldspar and quartz and an exterior K-feldspar micro-vein indicate equilibrium temperatures within 20–30 °C of the peak metamorphic temperatures estimated for the sample (770 °C). Contact between these K-feldspar micro-veins and Fe-Mg silicate minerals, such as garnet, orthopyroxene, clinopyroxene or biotite along the interface, is observed to be very clean with no signs of melt textures or alteration to sheet silicates. This lends support to the idea that these micro-veins did not originate from a melt and, if fluid induced, that the water activity of these fluids must have been relatively low. All of these lines of evidence point to a high grade origin for the K-feldspar micro-veins and support the hypothesis that they formed during the granulite facies metamorphism of the metabasite layers in an extensional tectonic environment as the consequence of localised dehydration reactions involving the breakdown of amphibole in the presence of quartz to orthopyroxene, clinopyroxene, plagioclase, K-feldspar and H2O. It is proposed that the dehydration of the metabasite layers to an orthopyroxene–garnet-bearing gneiss over a 4-km traverse in the upper Val Strona during granulite facies metamorphism was a metasomatic event initiated by the presence of a high-grade, low H2O activity fluid (most likely a NaCl–KCl supercritical brine), related to the magmatic underplating event responsible for the Mafic Formation; and that this dehydration event did not involve partial melting. Received: 15 February 2000 / Accepted: 26 June 2000  相似文献   

20.
ABSTRACT The Darjeeling-Sikkim region provides a classic example of inverted Himalayan metamorphism. The different parageneses of pelitic rocks containing chlorite, biotite, garnet, staurolite, kyanite, sillimanite, plagioclase and K-feldspar are documented by a variety of textures resulting from continuous and discontinuous reactions in the different zones. Microprobe data of coexisting minerals show that XMg varies in the order: garnet < staurolite < biotite < chlorite. White mica is a solid solution between muscovite and phengite. Garnet is mostly almandine-rich and shows normal growth zoning in the lower part of the Main Central Thrust (MCT) zone, and reverse zoning in the upper part of the zone. Chemographical relations and inferred reactions for different zones are portrayed in AFM space. In the low-grade zones oriented chlorites and micas and rolled garnets grew syntectonically, and were succeeded by cross-cutting chlorites and micas and garnet rims. In the upper zones sillimanite, kyanite and staurolite crystallized during a static inter-kinematic phase. P-T contitions of metamorphism, estimated through different models of geothermobarometry, are estimated to have been 580°c for the garnet zone to a maximum of 770°c for the sillimanite zone. The preferred values of pressure range from 5.0 kbar to 7.7 kbar. Models to explain the inverted metamorphism include overthrusting of a hot high Himalayan slab along a c. 5 km wide ductile MCT zone and the syn- or post-metamorphic folding of isograds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号