共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural changes of CaSnO3, a GdFeO3-type perovskite, have been investigated to 7 GPa in a diamond-anvil cell at room temperature using single-crystal X-ray diffraction. Significant changes are observed in both the octahedral Sn–O bond lengths and tilt angles between the SnO6 octahedra. The octahedral (SnO6) site shows anisotropic compression and consequently the distortion of SnO6 increases with pressure. Increased pressure also results in a decrease of both of the inter-octahedral angles, Sn–O1–Sn and Sn–O2–Sn, indicating that octahedral tilting increases with increasing pressure, chiefly equivalent to rotation of the SnO6 octahedra about the pseudocubic <001>p axis. The distortion in the CaO12 and SnO6 sites, along with the octahedral SnO6 tilting, is attributed to the SnO6 site being less compressible than the CaO12 site.Acknowledgments The authors acknowledge with gratitude the financial support for this work from NSF grant EAR-0105864. Ruby pressure measurements were conducted with the Raman system in the Vibrational Spectroscopy Laboratory in the Department of Geosciences at Virginia Tech with the help of Mr. Charles Farley. 相似文献
2.
We present here a numerical modelling study of dislocations in perovskite CaTiO3. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking
fault (GSF) results as a starting model. The GSF are determined from first-principles calculations using the VASP code. The
dislocation properties such as collinear, planar core spreading and Peierls stresses are determined for the following slip
systems: [100](010), [100](001), [010](100), [010](001), [001](100), [001](010),
and All dislocations exhibit lattice friction, but glide appears to be easier for [100](010) and [010](100).
[001](010) and [001](100) exhibit collinear dissociation. Comparing Peierls stresses among tausonite (SrTiO3), perovskite (CaTiO3) and MgSiO3 perovskite demonstrates the strong influence of orthorhombic distortions on lattice friction. However, and despite some quantitative
differences, CaTiO3 appears to be a satisfactory analogue material for MgSiO3 perovskite as far as dislocation glide is concerned. 相似文献
3.
Al-containing MgSiO3 perovskites of four different compositions were synthesized at 27 GPa and 1,873 K using a Kawai-type high-pressure apparatus:
stoichiometric compositions of Mg0.975Si0.975Al0.05O3 and Mg0.95Si0.95Al0.10O3 considering only coupled substitution Mg2+ + Si4+ = 2Al3+, and nonstoichiometric compositions of Mg0.99Si0.96Al0.05O2.985 and Mg0.97Si0.93Al0.10O2.98 taking account of not only the coupled substitution but also oxygen vacancy substitution 2Si4+ = 2Al3+ + VO¨. Using the X-ray diffraction profiles, Rietveld analyses were performed, and the results were compared between the stoichiometric
and nonstoichiometric perovskites. Lattice parameter–composition relations, in space group Pbnm, were obtained as follows. The a parameters of both of the stoichiometric and nonstoichiometric perovskites are almost constant in the X
Al range of 0–0.05, where X
Al is Al number on the basis of total cation of two (X
Al = 2Al/(Mg + Si + Al)), and decrease with further increasing X
Al. The b and c parameters of the stoichiometric perovskites increase linearly with increasing Al content. The change in the b parameter of the nonstoichiometric perovskites with Al content is the same as that of the stoichiometric perovskites within
the uncertainties. The c parameter of the nonstoichiometric perovskites is slightly smaller than that of the stoichiometric perovskites at X
Al of 0.10, though they are the same as each other at X
Al of 0.05. The Si(Al)–O1 distance, Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O distance of the nonstoichiometric perovskites
keep almost constant up to X
Al of 0.05, and then the Si(Al)–O1 increases and both of the Si(Al)–O1–Si(Al) angle and minimum Mg(Al)–O decrease with further
Al substitution. These results suggest that the oxygen vacancy substitution may be superior to the coupled substitution up
to X
Al of about 0.05 and that more Al could be substituted only by the coupled substitution at 27 GPa. The Si(Al)–O1 distance and
one of two independent Si(Al)–O2 distances in Si(Al)O6 octahedra in the nonstoichiometric perovskites are always shorter than those in the stoichiometric perovskite at the same
Al content. These results imply that oxygen defects may exist in the nonstoichiometric perovskites and distribute randomly. 相似文献
4.
The mineral ussingite, Na2AlSi3O8(OH), an interrupted tectosilicate, has strong hydrogen bonding between OH and the other nonbridging oxygen atom in the structure. Infrared spectra contain a strongly polarized, very broad OH-stretching band with an ill-defined maximum between 1500 and 1800 cm–1, and a possible OH librational bending mode at 1295 cm–1. The IR spectra confirm the orientation of the OH vector within the triclinic unit cell as determined from X-ray refinement (Rossi et al. 1974). There are three distinct bands in the 1H NMR spectrum of ussingite: a predominant band at 13.5 ppm (TMS) representing 90% of the structural hydrogen, a second band at 15.9 ppm corresponding to 8% of the protons, and a third band at 11.0 ppm accounting for the remaining 2% of structural hydrogen. From the correlation between hydrogen bond length and 1H NMR chemical shift (Sternberg and Brunner 1994), the predominant hydrogen bond length (H...O) was calculated to be 1.49 Å, in comparison to the hydrogen bond length determined from X-ray refinement (1.54 Å). The population of protons at 15.9 ppm is consistent with 5–8% Al–Si disorder. Although the ussingite crystal structure and composition are similar to those of low albite, the bonding environment of OH in low albite and other feldspars, as characterized through IR and 1H NMR, is fundamentally different from the strong hydrogen bonding found in ussingite. 相似文献
5.
Yuichi Shirako Hiroshi Kojitani Masaki Akaogi Kazunari Yamaura Eiji Takayama-Muromachi 《Physics and Chemistry of Minerals》2009,36(8):455-462
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite. 相似文献
6.
M. Zhang G. J. Redhammer E. K. H. Salje M. Mookherjee 《Physics and Chemistry of Minerals》2002,29(9):609-616
Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/c–P21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit
cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral
changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and
330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze
the order parameter of the C2/c–P21/c phase transition, and the results suggest that the transition is close to tricritical.
Received: 21 January 2002 / Accepted: 22 July 2002 相似文献
7.
M. Akaogi H. Kojitani T. Morita H. Kawaji T. Atake 《Physics and Chemistry of Minerals》2008,35(5):287-297
Low-temperature isobaric heat capacities (C
p
) of MgSiO3 ilmenite and perovskite were measured in the temperature range of 1.9–302.4 K with a thermal relaxation method using the
Physical Properties Measurement System. The measured C
p
of perovskite was higher than that of ilmenite in the whole temperature range studied. From the measured C
p
, standard entropies at 298.15 K of MgSiO3 ilmenite and perovskite were determined to be 53.7 ± 0.4 and 57.9 ± 0.3 J/mol K, respectively. The positive entropy change
(4.2 ± 0.5 J/mol K) of the ilmenite–perovskite transition in MgSiO3 is compatible with structural change across the transition in which coordination of Mg atoms is changed from sixfold to eightfold.
Calculation of the ilmenite–perovskite transition boundary using the measured entropies and published enthalpy data gives
an equilibrium transition boundary at about 20–23 GPa at 1,000–2,000 K with a Clapeyron slope of −2.4 ± 0.4 MPa/K at 1,600 K.
The calculated boundary is almost consistent within the errors with those determined by high-pressure high-temperature in
situ X-ray diffraction experiments. 相似文献
8.
Victor L. Vinograd Julian D. Gale Björn Winkler 《Physics and Chemistry of Minerals》2007,34(10):713-725
Static lattice energy calculations (SLEC), based on empirical interatomic potentials, have been performed for a set of 800
different structures in a 2 × 2 × 4 supercell of C2/c diopside with compositions between diopside and jadeite, and with different states of order of the exchangeable Na/Ca and
Mg/Al cations. Excess static energies of these structures have been cluster expanded in a basis set of 37 pair-interaction
parameters. These parameters have been used to constrain Monte Carlo simulations of temperature-dependent properties in the
range of 273–2,023 K and to calculate a temperature–composition phase diagram. The simulations predict the order–disorder
transition in omphacite at 1,150 ± 20°C in good agreement with the experimental data of Carpenter (Mineral Petrol 78:433–440,
1981). The stronger ordering of Mg/Al within the M1 site than of Ca/Na in the M2 site is attributed to the shorter M1–M1 nearest-neighbor
distance, and, consequently, the stronger ordering force. The comparison of the simulated relationship between the order parameters
corresponding to M1 and M2 sites with the X-ray refinement data on natural omphacites (Boffa Ballaran et al. in Am Mineral
83:419–433, 1998) suggests that the cation ordering becomes kinetically ineffective at about 600°C. 相似文献
9.
Taku Okada Takehiko Yagi Daisuke Nishio-Hamane 《Physics and Chemistry of Minerals》2011,38(4):251-258
The phase relations and compression behavior of MnTiO3 perovskite were examined using a laser-heated diamond-anvil cell, X-ray diffraction, and analytical transmission electron
microscopy. The results show that MnTiO3 perovskite becomes unstable and decomposes into MnO and orthorhombic MnTi2O5 phases at above 38 GPa and high temperature. This is the first example of ABO3 perovskite decomposing into AO + AB2O5 phases at high pressure. The compression behavior of volume, axes, and the tilting angle of TiO6 octahedron of MnTiO3 perovskite are consistent with those of other A2+B4+O3 perovskites, although no such decomposition was observed in other perovskites. FeTiO3 is also known to decompose into two phases, instead of transforming into the CaIrO3-type post-perovskite phase and we argue that one of the reasons for the peculiar behavior of titanate is the weak covalency
of the Ti–O chemical bonds. 相似文献
10.
S. C. Tarantino M. Zema F. Maglia M. C. Domeneghetti M. A. Carpenter 《Physics and Chemistry of Minerals》2005,32(8-9):568-577
A suite of (Mn1-x
Fe
x
)Nb2O6 (x=0, 0.05, 0.25, 0.50, 0.75, 1) columbite samples has been prepared by solid-state reaction from oxides. X-ray diffraction
and spectroscopic investigations have been carried out in order to gain different perspectives on how the solid solution adapts
at different length scales to cation mixing. X-ray powder diffraction and powder absorption IR spectroscopy data are presented.
The powder diffraction data show that there is no significant excess volume of mixing on the Fe–Mn columbite join. All the
unit-cell parameters decrease linearly as a function of increasing Fe content. Substitution of Fe2+ for the larger Mn2+ cation causes a decrease in the volume of the A polyhedron, which also becomes more regular with respect to both bond-length
and edge-length distortion parameters. No significant variation of the B site has been observed. Wavenumber shifts of the
IR peaks nearly all vary linearly with composition, consistent with linear variations of the lattice parameters. Line broadening
has been quantified by autocorrelation analysis of the IR spectra. This is interpreted as suggesting that there is some element
of local strain or positional disorder at the length scale of second or third nearest neighbours around sites occupied by
Fe. 相似文献
11.
V. L. Vinograd O. G. Safonov D. J. Wilson L. L. Perchuk L. Bindi J. D. Gale B. Winkler 《Petrology》2010,18(4):447-459
Atomistic model was proposed to describe the thermodynamics of mixing in the diopside-K-jadeite solid solution (CaMgSi2O6-KAlSi2O6). The simulations were based on minimization of the lattice energies of 800 structures within a 2 × 2 × 4 supercell of C2/c diopside with the compositions between CaMgSi2O6 and KAlSi2O6 and with variable degrees of order/disorder in the arrangement of Ca/K cations in M2 site and Mg/Al in Ml site. The energy
minimization was performed with the help of a force-field model. The results of the calculations were used to define a generalized
Ising model, which included 37 pair interaction parameters. Isotherms of the enthalpy of mixing within the range of 273–2023
K were calculated with a Monte Carlo algorithm, while the Gibbs free energies of mixing were obtained by thermodynamic integration
of the enthalpies of mixing. The calculated T-X diagram for the system CaMgSi2O6-KAlSi2O6 at temperatures below 1000 K shows several miscibility gaps, which are separated by intervals of stability of intermediate
ordered compounds. At temperatures above 1000 K a homogeneous solid solution is formed. The standard thermodynamic properties
of K-jadeite (KAlSi2O6) evaluated from quantum mechanical calculations were used to determine location of several mineral reactions with the participation
of the diopside-K-jadeite solid solution. The results of the simulations suggest that the low content of KalSi2O6 in natural clinopyroxenes is not related to crystal chemical factors preventing isomorphism, but is determined by relatively
high standard enthalpy of this end member. 相似文献
12.
An equation of state for Mg(OH)2 brucite under high-pressure and high-temperature conditions has been obtained by measuring temperature dependence of volume up to 600 K at ambient pressure and pressure dependence of volume up to 16 GPa at 300, 473, 673, and 873 K with in situ X-ray diffraction. Pressure dependence of entropy of brucite has been calculated with thermal expansion coefficient and volume which are derived from the present EoS. This dependence indicates that generation of secondary OH dipoles affects entropy. The OH dipoles probably appear around 2 GPa and the number seems not to change over 8 GPa at 300 K. 相似文献
13.
14.
Fifteen samples of (Mg,Fe)SiO3 majorite with varying Fe/Mg composition and one sample of (Mg,Fe)(Si,Al)O3 majorite were synthesized at high pressure and temperature under different conditions of oxygen fugacity using a multianvil press, and examined ex situ using X-ray diffraction and Mössbauer and optical absorption spectroscopy. The relative concentration of Fe3+ increases both with total iron content and increasing oxygen fugacity, but not with Al concentration. Optical absorption spectra indicate the presence of Fe2+–Fe3+ charge transfer, where band intensity increases with increasing Fe3+ concentration. Mössbauer data were used in conjunction with electron microprobe analyses to determine the site distribution of all cations. Both Al and Fe3+ substitute on the octahedral site, and charge balance occurs through the removal of Si. The degree of Mg/Si ordering on the octahedral sites in (Mg,Fe)SiO3 majorite, which affects both the c/a ratio and the unit cell volume, is influenced by the thermal history of the sample. The Fe3+ concentration of (Mg,Fe)(Si,Al)O3 majorite in the mantle will reflect prevailing redox conditions, which are believed to be relatively reducing in the transition zone. Exchange of material across the transition boundary to (Mg,Fe) (Si,Al)O3 perovskite would then require a mechanism to oxidize sufficient iron to satisfy crystal-chemical requirements of the lower-mantle perovskite phase. 相似文献
15.
T. Irifune H. Naka T. Sanehira T. Inoue K. Funakoshi 《Physics and Chemistry of Minerals》2002,29(10):645-654
Phase transitions in MgAl2O4 spinel have been studied at pressures 22–38 GPa, and at temperatures up to 1600 °C, using a combination of synchrotron radiation
and a multianvil apparatus with sintered diamond anvils. Spinel dissociated into a mixture of MgO plus Al2O3 at pressures to 25 GPa, while it transformed to the CaFe2O4 (calcium ferrite) structure at higher pressures via the metastably formed oxide mixture upon increasing temperature. Neither
the e-phase nor the CaTi2O4-type MgAl2O4, which were reported in earlier studies using the diamond-anvil cell, were observed in the present pressure and temperature
range. The zero-pressure bulk modulus of the calcium-ferrite-type MgAl2O4 was calculated as K=213 (3) GPa, which is significantly lower than that reported by Yutani et al. (1997), but is consistent with a more recent
result by Funamori et al. (1998) and that estimated by an ab initio calculation by Catti (2001).
Received: 2 April 2002 / Accepted: 29 July 2002
Acknowledgements The authors thank Y. Higo, Y. Sueda, T.␣Ueda, Y. Tanimoto, A. Fukuyama, K. Ochi, F. Kurio and T. Kawahara for help in the
in situ X-ray observations at SPring-8 (No: 2000A0061-CD-np and 2000B0093-ND-np). We also thank W.␣Utsumi, J. Ando and O.
Shimomura for advice and encouragement during this study, and N. Funamori and an anonymous reviwer for comments on the article.
The present study is partly supported by the grant-in-aid for Scientific Research (A) of the Ministry of Education, Science,
Sport and Culture of the Japanese government (no: 11694088). 相似文献
16.
Philippe Léone Charlotte Doussier-Brochard Gilles André Yves Moëlo 《Physics and Chemistry of Minerals》2008,35(4):201-206
Mn2+Sb2S4, a monoclinic dimorph of clerite, and benavidesite (Mn2+Pb4Sb6S14) show well-individualized single chains of manganese atoms in octahedral coordination. Their magnetic structures are presented
and compared with those of iron derivatives, berthierite (Fe2+Sb2S4) and jamesonite (Fe2+Pb4Sb6S14). Within chains, interactions are antiferromagnetic. Like berthierite, MnSb2S4 shows a spiral magnetic structure with an incommensurate 1D propagation vector [0, 0.369, 0], unchanged with temperature.
In berthierite, the interactions between identical chains are antiferromagnetic, whereas in MnSb2S4 interactions between chains are ferromagnetic along c-axis. Below 6 K, jamesonite and benavidesite have commensurate magnetic structures with the same propagation vector [0.5, 0, 0]:
jamesonite is a canted ferromagnet and iron magnetic moments are mainly oriented along the a-axis, whereas for benavidesite, no angle of canting is detected, and manganese magnetic moments are oriented along b-axis. Below 30 K, for both compounds, one-dimensional magnetic ordering or correlations are visible in the neutron diagrams
and persist down to 1.4 K. 相似文献
17.
18.
We present results from low-temperature heat capacity measurements of spinels along the solid solution between MgAl2O4 and MgCr2O4. The data also include new low-temperature heat capacity measurements for MgAl2O4 spinel. Heat capacities were measured between 1.5 and 300 K, and thermochemical functions were derived from the results.
No heat capacity anomaly was observed for MgAl2O4 spinel; however, we observe a low-temperature heat capacity anomaly for Cr-bearing spinels at temperatures below 15 K. From
our data we calculate standard entropies (298.15 K) for Mg(Cr,Al)2O4 spinels. We suggest a standard entropy for MgAl2O4 of 80.9 ± 0.6 J mol−1 K−1. For the solid solution between MgAl2O4 and MgCr2O4, we observe a linear increase of the standard entropies from 80.9 J mol−1 K−1 for MgAl2O4 to 118.3 J mol−1 K−1 for MgCr2O4. 相似文献
19.
The position of hydrogen in the structure of topaz-OH was determined by means of ab-initio quantum-mechanic calculations. Static lattice energy calculations predict the existence of four non-equivalent positions of protons, which are characterized by O4–H1... O1, O4–H2... O2, O4–H3... O3 and O4–H4... O4 hydrogen bonds. The distribution of the protons between positions of local equilibrium is controlled by the proton–proton avoidance rule and the strength of the hydrogen bonds. The most favourable configuration of hydrogen atoms is achieved for adjacent protons, which form O4–H3... O3 and O4–H4... O4 hydrogen bonds, respectively. The thermal excitation of atoms at a temperature of 55 K is large enough for the hydrogen atoms occasionally to change their positions to form O4–H1... O1 and O4–H2... O2 bonds. At ambient pressures and higher temperatures the protons are in a dynamic exchange between the allowed positions of local minima. As a consequence, for nearly room-temperature conditions, the dynamic change between different structural configurations leads to the violation of all possible symmetry elements and with that to space group #E5/E5#1. The flipping of the protons between different sites is achieved by simple rotation of the OH-dipole and does not produce any significant distortion of the framework of topaz, whose symmetry remains that of the space group Pbnm. Therefore, no reduction of symmetry has been observed in former X-ray studies on topaz-OH. Calculated IR absorption spectra of topaz-OH were found to be in good agreement with measured spectra. According to the calculations, the two favourable configurations of protons might correspond to the measured peak splitting within the OH-stretching range. An experimentally observed low-frequency band at 3520 cm–1 was assigned to the OH-stretching of the O4–H3... O3 bond, while the band at 3600 cm–1 was attributed to OH-stretching of the O4–H4... O4 hydrogen bond. The broad peak in FAR-IR frequency range at 100–150 cm–1 is attributed to the stretching of H3... O3 and H4... O4 contacts. The rate of proton exchange at 670 K among different sites was estimated by ab-inito molecular dynamic simulations. The calculations predict that flipping of adjacent protons between O4–H3... O3 and O4–H4... O4 bonds at 670 K occur at a rate of about 1.96 THz. 相似文献
20.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), c = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the P–V data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed. 相似文献