首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the solar wind-magnetosphere interaction using a 3-D electromagnetic particle code. The results for an unmagnetized solar wind plasma streaming past a dipole magnetic field show the formation of a magnetopause and a magnetotail, the penetration of energetic particles into cusps and radiation belt and dawn-dusk asymmetries. The effects of interplanetary magnetic field (IMF) have been investigated in a similar way as done by MHD simulations. The simulation results with a southward IMF show the shrunk magnetosphere with great particle entry into the cusps and nightside magnetosphere. This is a signature of a magnetic reconnection at the dayside magnetopause. After a quasi-stable state is established with an unmagnetized solar wind we switched on a solar wind with an northward IMF. In this case the significant changes take place in the magnetotail. The waving motion was seen in the magnetotail and its length was shortened. This phenomena are consistent with the reconnections which occur at the high latitude magnetopause. In our simulations kinetic effects will determine the self-consistent anomalous resistivity in the magnetopause that causes reconnections.Deceased January 24, 1993; R. Bunemanet al. 1993.  相似文献   

2.
In a quiet condition, the solar wind kinetic energy is converted into electrical energy. A small part of this energy is dissipated as heat energy in the polar ionosphere. We identify at least three types of magnetospheric disturbances which are not associated with an increase of the heat production and call them reversible disturbances, while the magnetospheric substorm is an irreversible disturbance which is associated with a large increase of the heat production.The magnetosphere appears to have an inherent internal instability by which a large amount of heat energy is sporadically produced in the polar upper atmosphere at the expense of the magnetic energy in the magnetotail. A positive feed-back process may be responsible for the growth of the instability and for the expansive phase, while the recovery phase sets in when some process begins to suppress the positive feed-back process.  相似文献   

3.
A solar wind parameter ε, known as the energy coupling function, has been shown to correlate with the power consumption in the magnetosphere. It is shown in the present paper that the parameter ε can be identified semi-quantitatively as the dynamo power delivered from the solar wind to an open magnetosphere. This identification not only provides a theoretical basis for the energy coupling function, but also constitutes an observational verification of the solar wind-magnetosphere dynamo along the magnetotail. Moreover, one can now conclude that a substorm results when the dynamo power exceeds 1018 ergs ?1.  相似文献   

4.
A simplified model for the interaction of the cold solar wind with lunar magnetic anomalies is considered. Since on the illuminated side of the Moon the dynamic pressure of the solar wind significantly exceeds the magnetic pressure of the anomalies, upward propagation of the lunar field is possible only by means of diffusion. This process does not depend on the velocity but only on the concentration of the solar wind and the characteristic size of anomalies. Theoretical calculations are compared with the data of Apollo 12 and Explorer 35.  相似文献   

5.
The evidence is reviewed for a universal magnetic field of strength 10–9–10–8G; it has been extended to include the diffuse fields of galactic clusters and the extensive magnetic halos of spiral galaxies. Some likely effects of the universal fieldB 0 are as follows: (1) As suggested previously,B 0 is coupled to protogalaxies and evolves into magnetic structures which depend on the angle between the field and the gas rotational axis. These provide the blueprints for the various types of the Hubble sequence, (ii) The relatively few grand-design spiral galaxies result from tidal interactioon (M51-type), but normal spirals form as a result of the spiral oblique field) magnetic blueprint acting on sheared gravitational instabilities (Goldreich and Lynden-Bell). (iii) The model explains the prevalent warped galactic disks and perhaps their flat H1 rotation curves. (iv) A variety of puzzling H1 concentrations may have hydromagnetic explanations; they include the high-velocity clouds, streamers, rings and central systems. (v) Clusters of galaxies are known to have diffuse magnetic fields, and these are likely to explain the absence of spiral galaxies and the nature of the intracluster gas. (vi) Spiral galaxies are now known to have extensive magnetic halos. These appear explicable only in terms of the universal magnetic field model.  相似文献   

6.
Planar magnetic structure (PMS) is an interplanetary magnetic structure in which magnetic field vectors are all parallel to a plane but highly variable in both magnitude and direction in that plane. This magnetic structure corresponds to re-entrant loops of magnetic field lines in the photosphere that emanate into interplanetary space. To find information on the generation site, occurrence properties of PMSs are investigated by using the interplanetary magnetic field data obtained by Sakigake and ISEE-3 spacecraft. No significant correlation is found between PMS occurrence and the solar wind velocity gradient which would suggest interplanetary formation of PMSs. No significant correlation is found between the PMS events and flares or filaments, either. Instead, a half of the PMSs were projected to the vicinity of the sector boundary in the source surface magnetic field, although there are exceptions when PMS appeared in the center of a sector. The PMS planes were not parallel to the current sheet at the sector boundary. Sometimes PMSs were observed recurrently at the same heliospheric longitude in successive rotations of the Sun, suggesting persistence of the source of PMS on the Sun. The orientation of the PMS planes were not conserved in the recurrent PMSs.  相似文献   

7.
Helical waves of large amplitude observed recently in the tail of Comet Kohoutek are interpreted as stable waves arising due to non-linear evolution of Kelvin-Helmholtz instability. The dispersion equation for waves of a finite amplitude shows that the phase velocity of these waves should approximately coincide with the velocity of the plasma outflow in the tail rather than with the Alfvén velocity. This fact is shown to be in agreement with observations. One may estimate the magnetic field in the Comet Kohoutek tail from both the amplitude of observed helical waves and the pressure balance at the tail boundary. The field turns out to be of the order of the interplanetary magnetic field or less, i.e. ?25 γ near ~0.5 AU.  相似文献   

8.
Schrijver  C. J. 《Solar physics》1989,122(2):193-208
This paper studies how the properties of large-scale convection affect the decay of plages. The plage decay, caused by the random-walk dispersion of flux tubes, is suggested to be severely affected by differences between the mean size of cellular openings within and around plages. The smaller cell size within a plage largely explains the smaller diffusion coefficient within plages as compared to that of the surrounding regions. Moreover, the exchange of flux tubes between the inner regions of the plage and the surrounding network is suggested to be modified by this difference in cell size, and the concept of a partially transmitting plage periphery is introduced: this periphery preferentially turns back flux parcels that are moving out of the plage and preferentially lets through flux parcels that are moving into the plage, thus confining the flux tubes to within the plage. This semi-permeability of the plage periphery, together with the dependence of the diffusion coefficient on the flux-tube density, can explain the observed slow decay of plages (predicting a typical life time of about a month for a medium-sized plage), the existence of a well-defined plage periphery, and the observed characteristic mean magnetic flux density of about 100 G. One effect of the slowed decay of the plage by the semi-permeability of the plage periphery is the increase of the fraction of the magnetic flux that can cancel with flux of the opposite polarity along the neutral line to as much as 80%, as compared to at most 50% in the case of non-uniform diffusion. This may explain why only a small fraction of the magnetic flux is observed to escape from the plage into the surrounding network.  相似文献   

9.
Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name “magnetopause” to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ∼250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ∼95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar maximum conditions. These have all occurred during extreme solar conditions.  相似文献   

10.
We explore the role of complex multipolar magnetic fields in determining physical processes near the surface of rotation powered pulsars. We model the actual magnetic field as the sum of global dipolar and star-centred multipolar fields. In configurations involving axisymmetric and uniform multipolar fields, 'neutral points' and 'neutral lines' exist close to the stellar surface. Also, the curvature radii of magnetic field lines near the stellar surface can never be smaller than the stellar radius, even for very high-order multipoles. Consequently, such configurations are unable to provide an efficient pair-creation process above pulsar polar caps, necessary for plasma mechanisms of generation of pulsar radiation. In configurations involving axisymmetric and non-uniform multipoles, the periphery of the pulsar polar cap becomes fragmented into symmetrically distributed narrow subregions where curvature radii of complex magnetic field lines are less than the radius of the star. The pair-production process is only possible just above these 'favourable' subregions. As a result, the pair plasma flow is confined within narrow filaments regularly distributed around the margin of the open magnetic flux tube. Such a magnetic topology allows us to model the system of 20 isolated subbeams observed in PSR B0943+10 by Deshpande & Rankin. We suggest a physical mechanism for the generation of pulsar radio emission in the ensemble of finite subbeams, based on specific instabilities. We propose an explanation for the subpulse drift phenomenon observed in some long-period pulsars.  相似文献   

11.
We investigate the particle acceleration in a magnetic trap with converging mirrors, which is a constituent part of the magnetic reconnection mechanism in solar flares. We take into account the effect of Coulomb collisions on the formation of the accelerated-electron distribution function. The solution of the kinetic equation shows that the Coulomb scattering of anisotropic accelerated electrons leads to their isotropization. As a result, the fraction of trapped particles increases and the acceleration efficiency significantly rises.  相似文献   

12.
A statistical investigation has been made about the flare-process in relation to the photospheric magnetic field and configuration. It is understood from the analysis that the flare energy bears a linear relationship with the rate of change of flux of the longitudinal component of photospheric magnetic field.  相似文献   

13.
Using key dates associated with solar interaction regions (SIR), a superposed epoch analysis is performed on the zonal and meridional kinetic energy density and square of the vorticity (enstrophy) of the main motion at 500 mb height. No relationships are found between SIR and these atmospheric dynamical parameters irrespective of the polarity (North or South) of the enhanced interplanetary magnetic fields (IMF) within the SIR, or with latitude and season. This investigation and other available results suggest that the short term solar variations do not influence large volumes of the troposphere but only localized regions.The average atmospheric kinetic energy density during active solar conditions is higher than during quiet solar condition, with no significant differences in enstrophy. This confirms an earlier result.It is also shown that SIR with enhanced southward directed IMF correspond to higher level of geomagnetic index (Ap > 10, Kp > 3) than randomly selected days.  相似文献   

14.
A high time resolution study of the relationship between the solar wind-magnetosphere energy coupling function ? and the total energy dissipation rate UT of the magnetosphere is made using 5-min average values of solar wind data and of the geomagnetic indices AE and Dst. All the results are essentially the same as those obtained by the earlier studies which were based on the hourly average data set. Therefore, we confirm that the magnetosphere is primarily a driven system.  相似文献   

15.
Boundary condition asymmetries inherent in the solar wind flow past the Moon are included in a cylindrical model of the interplanetary magnetic field - Moon interaction. Numerical examinations of the sunward side response of this model are compared in the frequency domain with those of symmetrically excited spherical and cylindrical models and two characteristic differences are observed: the response of the asymmetric model is depressed at low frequencies due to magnetic diffusion around a conducting core, and is flattened at high frequencies because of the finite application time of the incident interplanetary magnetic field. The diffusion of field lines around the core is also evident in the time response of the model in the anti-solar cavity. The above features of the lunar response resulting from boundary condition asymmetries are shown to be evident in observational measurements.  相似文献   

16.
We show that the existence of anchored magnetic loops in the envelopes of evolved late-type stars would guarantee that the grains in radiatively driven winds would remain well-coupled to the neutral gas.  相似文献   

17.
Solar force-free magnetic fields on and above the photosphere   总被引:1,自引:0,他引:1  
If the problem of a magnetic field being force-free with = constant ( 0) is solved by some previously published methods, then the field obtained in the whole exterior of the Sun cannot have a finite energy content and the solution cannot be determined uniquely from only one magnetic field component given at the photosphere. A magnetic field in the volume between two parallel planes has been investigated by us (Chen and Wang, 1986).Based on observational data we present in this paper a suitable physical model for a half-space and adopted an integral transform established by us (Chen, 1980, 1983) to solve this problem. We then obtain a unique analytical solution of the problem from only one magnetic field component (longitudinal field observed) given at the photosphere. Not only the uniqueness of the solution has been proved but also the finiteness of magnetic energy content in the half-space considered has been verified. We have demonstrated that there is no singular point in the solution. It enables us to describe analytically the configurations of magnetic fields on and above the photosphere.  相似文献   

18.
Planetary magnetic fields could impact the evolution of planetary atmospheres and have a role in the determination of the required conditions for the emergence and evolution of life (planetary habitability). We study here the role of rotation in the evolution of dynamo-generated magnetic fields in massive Earth-like planets, Super Earths (1–10 M). Using the most recent thermal evolution models of Super Earths (Gaidos, E., Conrad, C.P., Manga, M., Hernlund, J. [2010]. Astrophys. J. 718, 596–609; Tachinami, C., Senshu, H., Ida, S. [2011]. Astrophys. J. 726, 70) and updated scaling laws for convection-driven dynamos, we predict the evolution of the local Rossby number. This quantity is one of the proxies for core magnetic field regime, i.e. non-reversing dipolar, reversing dipolar and multipolar. We study the dependence of the local Rossby number and hence the core magnetic field regime on planetary mass and rotation rate. Previous works have focused only on the evolution of core magnetic fields assuming rapidly rotating planets, i.e. planets in the dipolar regime. In this work we go further, including the effects of rotation in the evolution of planetary magnetic field regime and obtaining global constraints to the existence of intense protective magnetic fields in rapidly and slowly rotating Super Earths. We find that the emergence and continued existence of a protective planetary magnetic field is not only a function of planetary mass but also depend on rotation rate. Low-mass Super Earths (M ? 2 M) develop intense surface magnetic fields but their lifetimes will be limited to 2–4 Gyrs for rotational periods larger than 1–4 days. On the other hand and also in the case of slowly rotating planets, more massive Super Earths (M ? 2 M) have weak magnetic fields but their dipoles will last longer. Finally we analyze tidally locked Super Earths inside and outside the habitable zone of GKM stars. Using the results obtained here we develop a classification of Super Earths based on the rotation rate and according to the evolving properties of dynamo-generated planetary magnetic fields.  相似文献   

19.
Solar magnetic and bolometric cycles recorded in sea sediments   总被引:1,自引:0,他引:1  
The total carbonate and thermoluminescence (TL) profiles of the GT89-3 Ionian sea sediment core have been measured in the upper 200 cm of the core spanning the last 3100 years in order to test the presence of the Gleissberg (80–90 yr) cycle in the two different time series recorded in the same archive. Two different sampling intervals respectively of 2.5 mm and 2 mm have been chosen for the measurements in order to obtain results independent from sampling effects in the time series. We have revealed the Gleissberg cycle at 83 and 92 yr in both records.  相似文献   

20.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号