首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SMART-1 mission has recently arrived at the Moon. Its payload includes D-CIXS, a compact X-ray spectrometer. SMART-1 is a technology evaluation mission, and D-CIXS is the first of a new generation of planetary X-ray spectrometers. Novel technologies enable new capabilities for measuring the fluorescent yield of a planetary surface or atmosphere which is illuminated by solar X-rays. During the extended SMART-1 cruise phase, observations of the Earth showed strong argon emission, providing a good source for calibration and demonstrating the potential of the technique. At the Moon, our initial observations over Mare Crisium show a first unambiguous remote sensing of calcium in the lunar regolith. Data obtained are broadly consistent with current understanding of mare and highland composition. Ground truth is provided by the returned Luna 20 and 24 sample sets.  相似文献   

2.
The D-CIXS X-ray spectrometer on ESA's SMART-1 mission will provide the first global coverage of the lunar surface in X-rays, providing absolute measurements of elemental abundances. The instrument will be able to detect elemental Fe, Mg, Al and Si under normal solar conditions and several other elements during solar flare events. These data will allow for advances in several areas of lunar science, including an improved estimate of the bulk composition of the Moon, detailed observations of the lateral and vertical nature of the crust, chemical observations of the maria, investigations into the lunar regolith, and mapping of potential lunar resources. In combination with information to be obtained by the other instruments on SMART-1 and the data already provided by the Clementine and Lunar Prospector missions, this information will allow for a more detailed look at some of the fundamental questions that remain regarding the origin and evolution of the Moon.  相似文献   

3.
4.
The SMART-1 lunar impact   总被引:1,自引:0,他引:1  
The SMART-1 spacecraft impacted the Moon on 3rd September 2006 at a speed of 2 km s−1 and at a very shallow angle of incidence (∼1°). The resulting impact crater is too small to be viewed from the Earth; accordingly, the general crater size and shape have been determined here by laboratory impact experiments at the same speed and angle of incidence combined with extrapolating to the correct size scale to match the SMART-1 impact. This predicts a highly asymmetric crater approximately 5.5-26 m long, 1.9-9 m wide, 0.23-1.5 m deep and 0.71-6.9 m3 volume. Some of the excavated mass will have gone into crater rim walls, but 0.64-6.3 m3 would have been ejecta on ballistic trajectories corresponding to a cloud of 2200-21,800 kg of lunar material moving away from the impact site. The shallow Messier crater on the Moon is similarly asymmetric and is usually taken as arising from a highly oblique impact. The light flash from the impact and the associated ejecta plume were observed from Earth, but the flash magnitude was not obtained, so it is not possible to obtain the luminous efficiency of the impact event.  相似文献   

5.
6.
The UK-built Chandrayaan-1 X-ray Spectrometer (C1XS) will fly as an ESA instrument on India's Chandrayaan-1 mission to the Moon, launched in October 2008. C1XS builds on experience gained with the earlier D-CIXS instrument on SMART-1, but will be a scientifically much more capable instrument. Here we describe the scientific objectives of this instrument, which include mapping the abundances of the major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) in the lunar crust. These data will aid in determining whether regional compositional differences (e.g., the Mg/Fe ratio) are consistent with models of lunar crustal evolution. C1XS data will also permit geochemical studies of smaller scale features, such as the ejecta blankets and central peaks of large impact craters, and individual lava flows and pyroclastic deposits. These objectives all bear on important, and currently unresolved, questions in lunar science, including the structure and evolution of any primordial magma ocean, as revealed by vertical and lateral geochemical variations in the crust, and the composition of the lunar mantle, which will further constrain theories of the Moon's origin, thermal history and internal structure.  相似文献   

7.
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km, while the apocentre will extend to about 10,000 km. During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg, including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists.The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.  相似文献   

8.
The First Spacelab mission, launched on Space ShuttleFlight STS-9 in November 1983 carried a multidisciplinary payload which was intended to demonstrate that valuable scientific results can be achieved from such short duration missions. The payload complement included a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment were the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 up to 30 keV. The instrument based on the gas scintillation proportional counter had an effective area of some 180 cm2 with an energy resolution of 9% at 7 keV.The instrument parameters and the performance, using data from the flight and ground calibration, are discussed.  相似文献   

9.
The lunar surface reveals a sharp opposition effect, which is to be explained by the shadowing and coherent backscattering mechanisms. Generalizing the radiative transfer theory via Monte Carlo methods, we are carrying out studies of backscattering in regolith-like scattering media. We have also started systematic laboratory measurements of structural simulators of lunar regolith. The SMART-1 AMIE and D-CIXS/XSM experiments provide us a unique opportunity for a simultaneous multiwavelength study of the lunar regolith close to opposition, since the SMART-1 spacecraft will pass over several different types of lunar surface at zero phase angles. Results of our theoretical and laboratory investigations can be used as a basis to interpret the SMART-1 AMIE and D-CIXS/XSM experiments. In particular, it seems to be possible to estimate regional variations of regolith particle volume fraction and their size. A short review of observational, experimental and theoretical works is also presented here.  相似文献   

10.
SMART-1 is a technology demonstrator for using primary electric propulsion on interplanetary spacecraft. Hence, studying of the interaction of the plasma emitted by the thruster with the environment and the spacecraft is one of the top priorities during the mission. Two experiments (Electronic propulsion diagnostic package and Spacecraft potential, electron and dust experiment) are available to measure the electron densities and temperatures as well as wave electric fields during the operation of the electric propulsion thruster. Additionally, a retarding potential analyser, a quartz microbalance and a solar-cell sample will analyse data from slow charge-exchange ions which are a potential contamination source. ESTEC is developing a 3D particle-in-cell model in order to study the spacecraft/environment interactions on SMART-1 and interpret the measurements. In the present paper, we will review the contamination effects associated with electric propulsion and how the plasma sensors cover them. We further present preliminary results from the numerical simulation and show how the flight data will be used to validate the modelling code. A successful validation of the simulation will support future interplanetary and commercial missions featuring electric propulsion to reduce the risk of contamination and interference with on board instruments.  相似文献   

11.
We describe the future SMART-1 European Space Mission whose objective is to study the lunar surface from a polar lunar orbit. In particular, it is anticipated that selected regions of the Moon will be photographed using the AMIE camera with a mean spatial resolution of about 100 m in three spectral channels (0.75, 0.92, and 0.96 m) over a wide range of phase angles. Since these spectral channels and the AMIE resolution are close to those of the UVVIS camera onboard the Clementine spacecraft, the simultaneous processing of SMART-1 and Clementine data can be planned, for example, to obtain phase-ratio images. These images carry information on the structural features of the lunar surface. In particular, UVVIS/Clementine data revealed a photometric anomaly at the Apollo-15 landing site associated with the blowing of the lunar regolith by the lander engine. Anomalies were found in the ejection zones of several fresh craters.  相似文献   

12.
The advanced Moon micro-imager experiment (AMIE) is the imaging system on board ESA mission to the Moon SMART-1; it makes use of a miniaturised detector and micro-processor electronics developed by SPACE X in the frame of the ESA technical programme. The AMIE micro-imager will provide high resolution CCD images of selected lunar areas and it will perform colour imaging through three filters at 750, 915 and 960 nm with a maximum resolution of 46 m/pixel at the perilune of 500 km. Specific scientific objectives will include (1) imaging of high latitude regions in the southern hemisphere, in particular the South Pole Aitken basin (SPA) and the permanently shadowed regions close to the South Pole, (2) determination of the photometric properties of the lunar surface from observations at different phase angles (physical properties of the regolith), (3) multi-band imaging for constraining the chemical and mineral composition of the surface, (4) detection and characterisation of lunar non-mare volcanic units, (5) study of lithological variations from impact craters and implications for crustal heterogeneity. The AMIE micro-imager will also support a Laser-link experiment to Earth, an On Board Autonomous Navigation investigation and a Lunar libration experiment coordinated with radio science measurements.  相似文献   

13.
The C1XS X-ray Spectrometer on Chandrayaan-1   总被引:1,自引:0,他引:1  
The Chandrayaan-1 X-ray Spectrometer (C1XS) is a compact X-ray spectrometer for the Indian Space Research Organisation (ISRO) Chandrayaan-1 lunar mission. It exploits heritage from the D-CIXS instrument on ESA's SMART-1 mission. As a result of detailed developments to all aspects of the design, its performance as measured in the laboratory greatly surpasses that of D-CIXS. In comparison with SMART-1, Chandrayaan-1 is a science-oriented rather than a technology mission, leading to far more favourable conditions for science measurements. C1XS is designed to measure absolute and relative abundances of major rock-forming elements (principally Mg, Al, Si, Ca and Fe) in the lunar crust with spatial resolution ?25 FWHM km, and to achieve relative elemental abundances of better than 10%.  相似文献   

14.
Photometric anomalies of the lunar surface studied with SMART-1 AMIE data   总被引:2,自引:1,他引:1  
We present new results from the mapping of lunar photometric function parameters using images acquired by the spacecraft SMART-1 (European Space Agency). The source data for selected lunar areas imaged by the AMIE camera of SMART-1 and the data processing are described. We interpret the behavior of photometric function in terms of lunar regolith properties. Our study reveals photometric anomalies on both small (sub-kilometer) and large (tens of kilometers) scales. We found the regolith mesoscale roughness of lunar swirls to be similar in Mare Marginis, Mare Ingenii, and the surrounding terrains. Unique photometric properties related to peculiarities of the millimeter-scale regolith structure for the Reiner Gamma swirl are confirmed. We identified several impact craters of subkilometer sizes as the source of photometric anomalies created by an increase in mesoscale roughness within the proximal crater ejecta zones. The extended ray systems reveal differences in the photometric properties between proximal and distant ejecta blankets. Basaltic lava flows within Mare Imbrium and Oceanus Procellarum indicate higher regolith porosity for the redder soils due to differences in the chemical composition of lavas.  相似文献   

15.
The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.  相似文献   

16.
17.
We present here the annual behavior of atmospheric water vapor on Mars, as observed by the OMEGA spectrometer on board Mars Express during its first martian year. We consider all the different features of the cycle of water vapor: temporal evolution, both at a seasonal and at a diurnal scale; longitudinal distribution; and the vertical profile, through the variations in the saturation height. We put our results into the context of the current knowledge on the water cycle through a systematic comparison with the already published datasets. The seasonal behavior is in very good agreement with past and simultaneous retrievals both qualitatively and quantitatively, within the uncertainties. The average water vapor abundance during the year is ∼10 pr. μm, with an imbalance between northern and southern hemisphere, in favor of the first. The maximum of activity, up to 60 pr. μm, occurs at high northern latitudes during local summer and shows the dominance of the northern polar cap within the driving processes of the water cycle. A corresponding maximum at southern polar latitudes during the local summer is present, but less structured and intense. It reaches ∼25 pr. μm at its peak. Global circulation has some influence in shaping the water cycle, but it is less prominent than the results from previous instruments suggest. No significant correlation between water vapor column density and local hour is detected. We can constrain the amount of water vapor exchanged between the surface and the atmosphere to few pr. μm. This is consistent with recent results by OMEGA and PFS-LW. The action of the regolith layer on the global water cycle seems to be minor, but it cannot be precisely constrained. The distribution of water vapor on the planet, after removing the topography, shows the already known two-maxima system, over Tharsis and Arabia Terra. However, the Arabia Terra increase is quite fragmented compared with previous observations. A deep zone of minimum separates the two regions. The saturation height of water vapor is mainly governed by the variations of insolation during the year. It is confined within 5-15 km from the surface at aphelion, while in the perihelion season it stretches up to 55 km of altitude.  相似文献   

18.
We present X-ray fluorescence observations of the lunar surface, made by the Chandrayaan-1 X-ray Spectrometer during two solar flare events early in the mission (12th December 2008 and 10th January 2009). Modelling of the X-ray spectra with an abundance algorithm allows quantitative estimates of the MgO/SiO2 and Al2O3/SiO2 ratios to be made for the two regions, which are in mainly basaltic areas of the lunar nearside. One of these ground tracks includes the Apollo 14 landing site on the Fra Mauro Formation. Within the 1σ errors provided, the results are inside the range of basaltic samples from the Apollo and Luna collections. The Apollo 14 soil composition is in agreement with the results from the January flare at the 1σ uncertainty level. Discrepancies are observed between our results and compositions derived for the same areas by the Lunar Prospector gamma-ray spectrometer; some possible reasons for this are discussed.  相似文献   

19.
We present a high-resolution Bragg spectrometer designed for the observation of the soft X-ray cosmic diffuse background. The instrument concept is derived from the de Broglie geometry for the study of extended sources. It consists in a mosaïc of spherical TlAP crystals associated with position sensitive detectors located on the focussing surface. The spectral resolution and its variation with the field of view is estimated by Monte-Carlo simulations for different X-ray energies chosen among the most intense lines emitted by an astrophysical plasma in the temperature range 1–4×106K. The estimated sensitivity and the simulations of actual space observations show that the instrument is capable to separate the strongest lines emitted by the most abundant ions (OVII,OVIII, FeXVII, NeIX, etc.) and to map the whole sky during a six month mission.  相似文献   

20.
运用自回归功率谱研究CygX-1X辐射的频谱特征,结果显示CygX-1转换态和高/软态时变频谱的连续成分,可以统一由有截断的幂律加噪声成分描述,转换态存在小于3Hz的宽峰结构及准周期振荡(QPO)成分(4-12Hz),而高/软态完全可由截断幂律谱描述,不存在显著的QPO.截断频率在各态都相当稳定,在不同态的演化与平流为主的吸积流模型(ADAF)预期的情形一致.本文结果表明,自回归功率港分析是研究X射线双星光变特征的一个有效的方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号