首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4U 1630−47 is a black-hole X-ray transient with one of the shortest recurrence times. Despite its regular outburst behaviour little is known about this source. Only recently has attention to this system increased. I discuss there the basic known (X-ray) properties of 4U 1630−47 and report on X-ray and radio observations obtained during its recent outburst, starting in February 1998. These observations strengthen some of the similarities seen between 4U 1630−47 and the Galactic superluminal sources GRO J1655−40 and GRS 1915+105, and provide the first detection of 4U 1630−47 in the radio. Using an updated outburst ephemeris I predict the next outburst to occur about a week before Christmas 1999.  相似文献   

2.
We report on a campaign of X-ray and soft γ-ray observations of the black hole candidate (BHC) H1743−322 (also named IGR J17464-3213), performed with the RXTE , INTEGRAL and Swift satellites. The source was observed during a short outburst between 2008 October 03 and November 16. The evolution of the hardness–intensity diagram throughout the outburst is peculiar, in that it does not follow the canonical pattern through all the spectral states (the so-called q-track pattern) seen during the outburst of black hole transients. On the contrary, the source only makes a transition from the hard state to the hard–intermediate state. After this transition, the source decreases in luminosity and its spectrum hardens again. This behaviour is confirmed by both spectral and timing analyses. This kind of outburst has been rarely observed before in a transient BHC.  相似文献   

3.
We present Swift observations of the black hole X-ray transient, GRO J1655−40, during the recent outburst. With its multiwavelength capabilities and flexible scheduling, Swift is extremely well suited for monitoring the spectral evolution of such an event. GRO J1655−40 was observed on 20 occasions and data were obtained by all instruments for the majority of epochs. X-ray spectroscopy revealed spectral shapes consistent with the 'canonical' low/hard, high/soft and very high states at various epochs. The soft X-ray source (0.3–10 keV) rose from quiescence and entered the low/hard state, when an iron emission line was detected. The soft X-ray source then softened and decayed, before beginning a slow rebrightening and then spending ∼3 weeks in the very high state. The hard X-rays (14–150 keV) behaved similarly but their peaks preceded those of the soft X-rays by up to a few days; in addition, the average hard X-ray flux remained approximately constant during the slow soft X-ray rebrightening, increasing suddenly as the source entered the very high state. These observations indicate (and confirm previous suggestions) that the low/hard state is key to improving our understanding of the outburst trigger and mechanism. The optical/ultraviolet light curve behaved very differently from that of the X-rays; this might suggest that the soft X-ray light curve is actually a composite of the two known spectral components, one gradually increasing with the optical/ultraviolet emission (accretion disc) and the other following the behaviour of the hard X-rays (jet and/or corona).  相似文献   

4.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

5.
We present a detailed study of the X-ray energy and power spectral properties of the neutron star transient IGR J17191−2821. We discovered four instances of pairs of simultaneous kilohertz quasi-periodic oscillations (kHz QPOs). The frequency difference between these kHz QPOs is between 315 and 362 Hz. We also report on the detection of five thermonuclear type I X-ray bursts and the discovery of burst oscillations at ∼294 Hz during three of them. Finally, we report on a faint and short outburst precursor, which occurred about two months before the main outburst. Our results on the broad-band spectral and variability properties allow us to firmly establish the atoll source nature of IGR J17191−2821.  相似文献   

6.
The long baseline simultaneous multiband ( BVRI ) observations of blazar 3C 273 are presented. We have made 758 optical multiband observations with the Yunnan Astronomical Observatory (YAO) 103 cm and Shanghai Astronomical Observatory (SHAO) 156 cm from 2003 January to 2005 April. In our observational campaign, the average colour indices are   B − V = 0.21, V − R = 0.26  and   R − I = 0.31  . The mean magnitudes in B, V, R and I are 12.895, 12.698, 12.441 and 12.139, respectively. The source is in a steady state over observational campaign. The correlations between colour index and brightness are discussed. We find that the correlations of   B − V   versus B ,   V − R   versus V and   R − I   versus R have significant negative correlation, while   B − V   versus V ,   V − R   versus R and   R − I   versus I have positive correlation. These strong correlations imply that the spectrum becomes bluer (flatter) when the source becomes brighter, and redden (softer) when the source fades both in intraday and long-term variability. The spectral evolution trends of 3C 273 are consistent with those of BL Lac objects.  相似文献   

7.
The aim of our observations is to investigate the intranight variability properties and the spectral variability of BL Lacertae. 799 optical multiband observations were intensively made with the Beijing–Arizona–Taiwan–Connecticut (BATC) 60/90 cm Schmidt telescope during the outburst composed of two subsequent flares in 2005. The second flare, whose rising phase lasted at least 44 d, was observed with amplitudes of more than 1.1 mag in three BATC optical bands. In general, on intranight time-scale the amplitude of variability and the variation rate are larger at the shorter wavelength, and the variation rate is comparable in the rising and decaying phases within each band. A possible time-lag between the light curves in bands e and m , around 11.6 min, was obtained. Based on the analysis of the colour index variation with the source brightness, the variability of BL Lacertae can be interpreted as having two components: a 'strongly chromatic' intranight component and a 'mildly chromatic' internight component, which may be the results of both intrinsic physical mechanism and geometric effects.  相似文献   

8.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

9.
We have used the University of Tasmania's 30-m radio telescope at Ceduna in South Australia to regularly monitor the flux density of a number of southern blazars. We report the detection of an annual cycle in the variability time-scale of the centimetre radio emission of PKS B1622−253. Observations of PKS B1519−273 over a period of nearly 2 yr confirm the presence of an annual cycle in the variability time-scale in that source. These observations prove that interstellar scintillation is the principal cause of inter-day variability at radio wavelengths in these sources. The best-fitting annual cycle model for both sources implies a high degree of anisotropy in the scattering screen and that it has a large velocity offset with respect to the local standard of rest. This is consistent with a greater screen distance for these 'slow' intra-day variability (IDV) sources than for rapid scintillators such as PKS B0405−385 or J1819+3845.  相似文献   

10.
We revisit the discovery outburst of the X-ray transient XTE J1550−564 during which relativistic jets were observed in 1998 September, and review the radio images obtained with the Australian Long Baseline Array, and light curves obtained with the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array. Based on H i spectra, we constrain the source distance to between 3.3 and 4.9 kpc. The radio images, taken some 2 d apart, show the evolution of an ejection event. The apparent separation velocity of the two outermost ejecta is at least  1.3 c   and may be as large as  1.9 c   ; when relativistic effects are taken into account, the inferred true velocity is  ≥ 0.8 c   . The flux densities appear to peak simultaneously during the outburst, with a rather flat (although still optically thin) spectral index of −0.2.  相似文献   

11.
IGR J18483−0311 was discovered with INTEGRAL in 2003 and later classified as a supergiant fast X-ray transient. It was observed in outburst many times, but its quiescent state is still poorly known. Here, we present the results of XMM–Newton , Swift and Chandra observations of IGR J18483−0311. These data improved the X-ray position of the source, and provided new information on the timing and spectral properties of IGR J18483−0311 in quiescence. We report the detection of pulsations in the quiescent X-ray emission of this source, and give for the first time a measurement of the spin-period derivative of this source. In IGR J18483−0311, the measured spin-period derivative of  −(1.3 ± 0.3) × 10−9 s s−1  likely results from light travel time effects in the binary. We compare the most recent observational results of IGR J18483−0311 and SAX J1818.6−1703, the two supergiant fast X-ray transients for which a similar orbital period has been measured.  相似文献   

12.
We report on observations of the X-ray pulsar IGR J16320−4751 (also known as AX J1631.9−4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) and XMM–Newton . We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at ∼1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320−4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301−2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of ∼0.07 keV. We discuss the origin of the X-ray emission in IGR J16320−4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.  相似文献   

13.
We report on new X-ray outbursts observed with Swift from three Supergiant Fast X-ray Transients (SFXTs): XTE J1739−302, IGR J17544−2619 and IGR J08408−4503. XTE J1739−302 underwent a new outburst on 2008 August 13, IGR J17544−2619 on 2008 September 4 and IGR J08408−4503 on 2008 September 21. While the XTE J1739−302 and IGR J08408−4503 bright emission triggered the Swift /Burst Alert Telescope, IGR J17544−2619 did not, thus we could perform a spectral investigation only of the spectrum below 10 keV. The broad-band spectra from XTE J1739−302 and IGR J08408−4503 were compatible with the X-ray spectral shape displayed during the previous flares. A variable absorbing column density during the flare was observed in XTE J1739−302 for the first time. The broad-band spectrum of IGR J08408−4503 requires the presence of two distinct photon populations, a cold one (∼0.3 keV) most likely from a thermal halo around the neutron star and a hotter one (1.4–1.8 keV) from the accreting column. The outburst from XTE J1739−302 could be monitored with a very good sampling, thus revealing a shape which can be explained with a second wind component in this SFXT, in analogy to what we have suggested in the periodic SFXT IGR J11215−5952. The outburst recurrence time-scale in IGR J17544−2619 during our monitoring campaign with Swift suggests a long orbital period of ∼150 d (in a highly eccentric orbit), compatible with what previously observed with INTEGRAL .  相似文献   

14.
We report results of the observations at the Vainu Bappu Observatory and the Uttar Pradesh State Observatory of eight radio-quiet quasi-stellar objects (RQQSOs) during 1996–99. This is a part of our ongoing programme to search for intranight optical variability in RQQSOs. Additional evidence for very rapid variability in three of the five optically bright and very luminous RQQSOs we had observed earlier, 1049−006, 1444+408 and 1630+377, was found. Of the three newly observed RQQSOs, the data for 0043+039 are too noisy to allow conclusions about variability to be drawn, but 0748+294 and 0824+098 show strong hints of microvariability. We also present a summary of the results from our entire programme to date, which includes observations of 16 radio-quiet QSOs and one radio-weak QSO, and compare the general properties of rapid variability in radio-quiet versus radio-loud AGN as determined from our work and that of several other groups. Observations of this kind are likely to play a key role in understanding the relative contributions of accretion discs and relativistic plasma jets to rapid optical fluctuations of AGN.  相似文献   

15.
Early-time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51) are reported. Photometric data suggest that SN 2005cs is a moderately underluminous Type II plateau SN (SN IIP). The SN was unusually blue at early epochs (   U − B ≈−0.9  about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He  i 5876-Å absorption component and, less clearly, of Hβ and Hα. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He  i components, or (more likely) be produced by different ions (N  ii , Si  ii ). Analogies with the low-luminosity, 56Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.  相似文献   

16.
We present the results of a photometric monitoring campaign of three well-studied FU Orionis systems (FU Orionis, V1057 Cygni and V1515 Cygni) undertaken at Maidanak Observatory between 1981 and 2003. When combined with photometric data in the literature, this data base provides a valuable resource for searching for short time-scale variability – both periodic and aperiodic – as well as for studying the secular evolution of these systems. In the case of V1057 Cyg (which is the system exhibiting the largest changes in brightness since it went into outburst) we compare the photometric data with time-dependent models. We show that prior to the end of the 'plateau' stage in 1996, the evolution of V1057 Cyg in the V –( B − V ) colour–magnitude diagram is well represented by disc instability models in which the outburst is triggered by some agent – such as an orbiting planet – in the inner disc. Following the end of the plateau phase in 1996, the dimming and irregular variations are consistent with occultation of the source by a variable dust screen, which has previously been interpreted in terms of dust condensation events in the observed disc wind. Here we instead suggest that this effect results from the interaction between the wind and an infalling dusty envelope, the existence of this envelope having been previously invoked in order to explain the mid-infrared emission of FU Orionis systems. We discuss how this model may explain some of the photometric and spectroscopic characteristics of FU Orionis systems in general.  相似文献   

17.
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814−338 during its 2003 outburst, observed by RXTE . A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period,   P orb= 15 388.7229(2)  s, and of the projected semimajor axis,   a sin  i / c = 0.390633(9)  light-second. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency  (ν= 314.356 108 79(1) Hz)  and the first estimate of the spin frequency derivative of this source while accreting     . This spin-down behaviour arises when both the fundamental frequency and the second harmonic are taken into consideration. We discuss this in the context of the interaction between the disc and the quickly rotating magnetosphere, at accretion rates sufficiently low to allow a threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. We also present indications of a jitter of the pulse phases around the mean trend, which we argue results from movements of the accreting hotspots in response to variations of the accretion rate.  相似文献   

18.
The results of a BeppoSAX target of opportunity (TOO) observation of the BL Lac object Mrk 421 during a high-intensity state are reported and compared with monitoring X-ray data collected with the BeppoSAX Wide Field Cameras (WFC) and the RXTE All Sky Monitor (ASM). The 0.1–100 keV spectrum of Mrk 421 shows continuous convex curvature that can be interpreted as the high-energy end of the synchrotron emission. The source shows significant short-term temporal and spectral variability, which can be interpreted in terms of synchrotron cooling. The comparison of our results with those of previous observations when the source was a factor 3–5 fainter shows evidence for strong spectral variability, with the maximum of the synchrotron power shifting to higher energy during high states. This behaviour suggests an increase in the number of energetic electrons during high states.  相似文献   

19.
We report on a comprehensive and consistent investigation into the X-ray emission from GX 339−4. All public observations in the 11 year RXTE archive were analysed. Three different types of model – single power law, broken power law and a disc + power law – were fitted to investigate the evolution of the disc, along with a fixed Gaussian component at 6.4 keV to investigate any iron line in the spectrum. We show that the relative variation in flux and X-ray colour between the two best sampled outbursts are very similar. The decay of the disc temperature during the outburst is clearly seen in the soft state. The expected decay is   S Disc∝ T 4  ; we measure   T 4.75±0.23  . This implies that the inner disc radius is approximately constant in the soft state. We also show a significant anticorrelation between the iron line equivalent width (EW) and the X-ray flux in the soft state while in the hard state the EW is independent of the flux. This results in hysteresis in the relation between X-ray flux and both line flux and EW. To compare the X-ray binary outburst to the behaviour seen in active galactic nuclei (AGN), we construct a disc fraction luminosity diagram for GX 339−4, the first for an X-ray binary. The shape qualitatively matches that produced for AGN. Linking this with the radio emission from GX 339−4 the change in radio spectrum between the disc and power-law-dominated states is clearly visible.  相似文献   

20.
XTE J1748−288 is a black hole X-ray transient which went into outburst in 1998 June. The X-ray light curves showed canonical morphologies, with minor variations on the 'fast rise exponential decay' profile. The radio source, however, reached an unusually high flux density of over 600 mJy. This high radio flux was accompanied by an exceptional  (>20  per cent)  fractional linear polarization, the variability of which was anticorrelated with the flux density. We use this variability to discuss possible depolarization mechanisms and to predict the underlying behaviour of the (unresolved) core/jet components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号