首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present new high-dispersion spectroscopic data for the Be star ε Cap. The purpose of these data is to study the short-period line profile variations. By using a two-dimensional period-finding technique, we confirm that the photometric period of 0.99 d is present in the helium line profiles. We show that the variations are not easily explained by non-radial pulsation and suggest that corotating circumstellar material is responsible.  相似文献   

2.
We present the results of a multisite spectroscopic and photometric campaign on the Be star ω Orionis. From the photometry and radial velocity variation of several spectral lines, we confirm that the star is a variable with period     . Only one period can be extracted from both the photometric and radial velocity observations. We find that the projected rotational velocity from the helium lines     is considerably smaller than from the metal lines     . The line profiles show an excess absorption feature moving from blue to red for half the period and from red to blue for the other half of the period. Another excess absorption feature moves exactly out of phase. The excess absorption features are present in photospheric lines as well as in lines which are significantly affected by circumstellar material, such as H β . From this we conclude that the periodic variations are most probably associated with corotating circumstellar material.  相似文献   

3.
We present new intensive photometric observations of the Be star μ Cen for several seasons which support a period close to 1 d. We also present high‐resolution spectroscopic data consisting of 302 spectra in 1999 and 864 spectra in 2000, all obtained within a two‐week observing run in each season. We use stacked grey-scale plots of spectra, from which the mean line profile has been removed, to examine the profile variations. We find that most nights show one residual absorption feature, moving from blue to red, visible in all helium and metal lines and also clearly visible in H α and other lines formed in the circumstellar environment. We therefore conclude that this feature is of circumstellar origin. In addition, a residual absorption feature moving from red to blue is sometimes seen at irregular intervals. We find that the residual absorption feature frequently strays outside the projected rotational velocity limit and that on occasions it remains well within this limit. The radial velocity data reproduce only two of the six frequencies previously found in the star. We point out that this by no means implies that the star is a multiperiodic, non-radial pulsator. Photometric data obtained over several seasons indicate a period very close to 1 d and not the 0.5-d period found from the radial velocities. We describe an outburst which occurred during the run and which resulted in increased H α emission two nights later. It is clear that outbursts in Be stars are localized events and that the gas released by outbursts is probably responsible for localized increased absorption, resulting in periodic light and line profile variations.  相似文献   

4.
We analyse a series of line profile observations of the He  i 6678 line in ζ Oph. A period analysis on these data using the mode and moments of the line profile confirms the two previously known periods. We describe a new method of mode identification for pulsating stars in which the calculated profiles are directly fitted to observed profiles. The method yields the full set of pulsational parameters including the spherical harmonic degree, ℓ, and azimuthal number, m . Application of the method to these data confirms the mode identifications previously suggested for the two periodicities. We find that the derived pulsational parameters are physically realistic and conclude that non-radial pulsation is the most likely explanation for the travelling subfeatures. However, a unique mode identification is still not possible – several non-sectorial modes fit the data as well as the usually adopted sectorial identifications. The predicted photometric amplitudes are in good accord with upper limits derived from photometric observations. We conclude that ζ Oph is a star in the β Cep instability strip in which two modes of high degree (probably ℓ=4 and ℓ=8) are excited. We present an interpretation of these findings in which the cause of the low-order line profile and light variations in periodic Be stars is corotating photospheric clouds, while the travelling subfeatures are incidental to the Be phenomenon and are a result of non-radial pulsation.  相似文献   

5.
6.
7.
8.
Papers published in recent years have contributed to resolve the enigma of the hypothetical Be nature of the hot pulsating star β Cephei. This star shows variable emission in the Hα line, typical for Be stars, but its projected rotational velocity is very much lower than the critical limit, contrary to what is expected for a typical Be star. The emission has been attributed to the secondary component of the β Cephei spectroscopic binary system.
In this paper, using both our and archived spectra, we attempt to recover the Hα profile of the secondary component and to analyse its behaviour with time for a long period. To accomplish this task, we first derive the atmospheric parameters of the primary,   T eff= 24 000 ± 250 K  and  log  g = 3.91 ± 0.10  , and then we use these values to compute its synthetic Hα profile, and finally we reconstruct the secondary's profile disentangling the observed one.
The secondary's Hα profile shows the typical two-peak emission of a Be star with a strong variability. We also analysed the behaviour versus time of some linewidth parameters: equivalent width, ratio of blue to red peak intensities, full width at half-maximum, peak separation and radial velocity of the central depression.
The projected rotational velocity  ( v sin  i )  of the secondary and the dimension of the equatorial surrounding disc have also been estimated.  相似文献   

9.
10.
11.
12.
We present and discuss 247 high dispersion échelle spectra of the δ Scuti star 38 o 1 Eri. We find at least three periods, but all are affected by aliasing problems. We attempt to identify the modes by a technique involving both temporal and spatial pre-whitening. All modes are of high degree, probably ℓ≈4 and ℓ≈7.  相似文献   

13.
14.
15.
We have calculated the total flux emitted in H α , P α and Br α by the circumstellar envelope of both an early Be star, γ Cas, and a late Be star, 1 Delphini, assuming the central star is the only source of energy input into the circumstellar envelope. These estimates are based on the Be-star models of Millar & Marlborough which have self-consistent temperature distributions determined by equating the local rates of energy gain and energy loss in the envelopes. We find that an additional source of ionizing photons, as argued by Apparao, is not necessary to account for the observed emission.  相似文献   

16.
17.
18.
Having analysed the accretion-based model of the dust–gas separation, which is regarded to be the most promising for the explanation of the anomalous properties of λ Bootis-type stars, we can conclude that: (i) for any reasonable density profiles of the shell, dust grains appear to be decoupled from the gaseous background within the region where the temperature drops to a value that is less than the condensation temperature of heavy elements such as Mg, Ca, Fe, etc; (ii) most likely, in the shell of λ Bootis-type stars only small dust particles (of less than ≈10−6 cm in size) can be created; (iii) significant alteration of the initial atmospheric chemical composition can take place in the case when the density in the shell changes as ∼ r −2.  相似文献   

19.
High-resolution spectral data of the Fe  II 5318 Å line in the γ Doradus star HD 164615 are presented. These show systematic changes in the spectral lineshapes with the photometric period of 0.8133 d which are modelled using either non-radial pulsations or cool star-spots. The non-radial modes that can fit the lineshape changes have m degree of 2–4. However, only the m = 2 mode seems to be consistent with the amplitude of the radial velocity variations measured for this star. The star-spot model, although it can qualitatively fit the lineshape changes, is excluded as a possible hypothesis on the basis of (1) poorer fits to the observed spectral line profiles, (2) an inability to account for the large changes in the spectral linewidth as a function of phase, (3) a predicted radial velocity curve that looks qualitatively different from the observed one, and (4) a predicted photometric curve that is a factor of 5 larger than the observed light curve (and with the wrong qualitative shape). Finally, a 'Doppler image' (assuming cool spots) derived from a sequence of synthetic line profiles having non-radial pulsations results in an image that is almost identical to the Doppler image derived for HD 164615. These results provide strong evidence that non-radial pulsations are indeed the explanation for the variability of HD 164615 as well as the other γ Dor variables.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号