首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal pyrite waste rocks (CPWR) which are mainly composed of colloidal pyrite and siderite widely deposit in sulfide mines in the middle and lower reaches of the Yangtze River belt, China, especially in Tongling City, Anhui Province, China. In this paper, a fixed-bed column was used to investigate the weathering and oxidation of CPWR and its role in immobilizing low-concentration Cu (10 mg L?1) under weakly acidic leach (pH = 5.0). The experimental results indicated that the breakthrough capacity was around 14.0 mg Cu g?1 CPWR when Cu2+ breakthrough concentration was 0.5 mg L?1. Sequential extraction of Cu and dithionite–citrate–bicarbonate extraction of free iron in the used CPWR after the column breakthrough indicated that Cu removal by CPWR consisted of the following processes: oxidation of pyrite and dissolution of siderite in CPWR, ferrous oxidation, and adsorption of Cu on ferric (hydr)oxides. This study shows the potential application of CPWR as an effective sorbent for the removal of low-concentration Cu from acid mine drainage.  相似文献   

2.
Mine water samples collected from different mines of the North Karanpura coalfields were analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness (TH), major anions, cations and trace metals to evaluate mine water geochemistry and assess solute acquisition processes, dissolved fluxes and its suitability for domestic, industrial and irrigation uses. Mine water samples are mildly acidic to alkaline in nature. The TDS ranged from 185 to 1343 mg L?1 with an average of 601 mg L?1. Ca2+ and Mg2+ are the dominant cations, while SO4 2? and HCO3 ? are the dominant anions. A high concentration of SO4 2? and a low HCO3 ?/(HCO3 ? + SO4 2?) ratio (<0.50) in the majority of the water samples suggest that either sulphide oxidation or reactions involving both carbonic acid weathering and sulphide oxidation control solute acquisition processes. The mine water is undersaturated with respect to gypsum, halite, anhydrite, fluorite, aluminium hydroxide, alunite, amorphous silica and oversaturated with respect to goethite, ferrihydrite, quartz. About 40% of the mine water samples are oversaturated with respect to calcite, dolomite and jarosite. The water quality assessment shows that the coal mine water is not suitable for direct use for drinking and domestic purposes and needs treatment before such utilization. TDS, TH, F?, SO4 2?, Fe, Mn, Ni and Al are identified as the major objectionable parameters in these waters for drinking. The coal mine water is of good to suitable category for irrigation use. The mines of North Karanpura coalfield annually discharge 22.35 × 106 m3 of water and 18.50 × 103 tonnes of solute loads into nearby waterways.  相似文献   

3.
Sediment and pore water samples have been collected from the coastal tidal flat in the Shuangtaizi estuary, China, in order to investigate the geochemical behavior of iron, cadmium, and lead during diagenesis and to assess the degree of contamination. The calculated enrichment factors and geoaccumulation indices for separate elements show that anthropogenic activities have had no significant influence on the distribution of Fe and Pb in the study area, whereas the distribution of Cd has been closely influenced in this way. The high percentage of exchangeable Cd (average of 56.34%) suggests that Cd represents a potential hazard to benthic organisms in the estuary. The calculated diffusive fluxes of metals show that the most mobilized metal is Fe (9.22 mg m?2 a?1), followed by Cd (0.54 mg m?2 a?1) and Pb (0.42 mg m?2 a?1). Low Fe2+ contents in surface pore water, alongside high chromium-reducible sulfur contents, and low acid-volatile sulfur, and elemental sulfur contents at 0–25 cm depth in sediments show that Fe2+ is formed by the reduction of Fe oxides and is transformed first to a solid phase of iron monosulfides (FeS) and eventually to pyrite (FeS2). The release of adsorbed Pb due to reductive dissolution of Fe/Mn oxides during early diagenesis could be a source of Pb2+ in pore water. From the relatively low total organic carbon contents measured in sediments (0.46–1.28%, with an average of 0.94%) and the vertical variation of Cd2+ in pore water, sulfide or Fe/Mn oxides (instead of organic matter) are presumed to exert a significant influence on carrying or releasing Cd by the sediments.  相似文献   

4.
The study was designed to quantify cadmium accumulation in different components of sewage treatment ponds during different seasons and to assess risk for human consumption perspective. The study estimated cadmium concentration in water, sludge, Eichhornia, plankton and tilapia fish from anaerobic, facultative, maturation-1 and -4 ponds during pre-monsoon, monsoon and post-monsoon periods. It resulted that cadmium accumulated among different components of anaerobic, facultative, maturation-1 and -4 ponds ranging 0–18, 0–10, 0–7 and 0–15.4 ppb, respectively. During monsoon, highest accumulation was observed in tilapia in both facultative and maturation ponds, but during post-monsoon, plankton community showed highest value in all. The highest bio-magnification of cadmium was recorded during monsoon with varying degrees (facultative pond: 4.39, maturation pond-1: 3.03 and maturation pond-4: 7.08). Cadmium concentration in tilapia lied within WHO’s safe level and may be recommended for human consumption. The concentration of cadmium was estimated by Flame Atomic Absorption Spectrophotometer. The above findings occurred due to chelation, adsorption and sedimentation, absorption and bio-accumulation, ionization, leaching through sediment and rainfall. Water pH (6.7–8.8), dissolved oxygen (0–17 mg L?1), total solids (251–650 mg L?1), iron (Fe2+) concentration (0.61–4.87 mg L?1) and sedimentation rate (278.9–2,409.6 g day?1 m?3) were conducive for the distribution of cadmium into different ecosystem components of treatment ponds. These ponds reclaimed 28.57–61.11 % of sewage-cadmium and may be promoted as a low-cost eco-tech for sewage treatment.  相似文献   

5.
We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L?1 and Cl? <250 mg L?1. The relationships of major ions with Cl? suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = ?13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.  相似文献   

6.
The concentration and dynamic of soil trace metals in natural ecosystems, in particularly, is dependent on the lithology of parent rock as well as topography and geopedological processes. To ascertain more knowledge for this dependency, soils on three parent rocks involving peridotite, pegmatite, and dolerite in two contrasting topography aspects were investigated. The total values of Fe, Mn, Zn, Cu, and Ni were determined and compared for different soil pedons. The concentration of Fe, Mn, and Ni were highest in soils developed from peridotite (127, 1.8 g kg?1, and 218 mg kg?1, respectively), intermediate in soils derived from dolerite (81, 1.3 g kg?1, and 166 mg kg?1, respectively), and least in soil developed from pegmatite (50, 0.23 g kg?1, and 20 mg kg?1, respectively). The values of Zn and Cu, originated from different parent rocks, were in order of dolerite (78 mg kg?1) > peridotite (77 mg kg?1) > pegmatite (28 mg kg?1) and pegmatite (121 mg kg?1) > peridotite (111 mg kg?1) > dolerite (28 mg kg?1), respectively. For most of the studied pedons, profile metals distribution differed among the soils: The values of Fe, Cu, and Ni were enriched in the cambic horizons mainly as result of release, mobilization, and redistribution of the studied metals during geopedological processes, whereas those of Zn and Mn were concentrated in the surface horizons. Probably due to greater weathering rate of trace metal-bearing rocks on north-facing slope, the content of the trace metals along with the geoaccumulation index (I geo) and the degree of soil contamination (C d) were higher than on south-facing slope. Based on assessment of soil pollution indices, the soils were categorized as unpolluted [I geo ≤ 0 (class 0)], unpolluted to moderately polluted levels [0 < I geo < 1 (class 1)], and very low [C d < 1.5 (class 0)] to low degree of contamination [1.5 < C d < 2 (class 1)].  相似文献   

7.
Bio-concentration of elements such as Mo, As, Se, Fe, Cu, Zn, Ni and Pb was analyzed in spring onion (Allium fistulosum L.) in three different locations of central Punjab, Pakistan. At location GW, relatively low level of hazardous elements was found in spring onion, suggesting that groundwater is a safe source of water for irrigating food crops. The pH of soil at wastewater irrigation was found less acidic (pH 7.4) than the other sites. The range of concentration in the different samples of spring onion was as follows: 6.15–8.16 mg kg?1 for Mo, 2.77–4.28 mg kg?1 for As, 0.395–0.705 mg kg?1 for Se, 36.73–48.17 mg kg?1 for Fe, 10.58–16.26 mg kg?1 for Cu, 28.87–39.79 mg kg?1 for Zn, 6.66–8.75 mg kg?1 for Ni and 4.33–6.09 mg kg?1 for Pb, respectively. High bio-concentration of Zn (15.37) from soil to spring onion was found at canal water irrigated location. The estimated daily intake of metal for spring onion was less, but the health risk index was higher than 1 for Mo, As, Cu, Pb and Ni, respectively. This was due to higher proportion of spring onion in diet, which consequently increased the health risk index for metals. Therefore, it is recommended to avoid growing vegetables in untreated urban and rural wastewater containing elevated amounts of metals.  相似文献   

8.
The long-term sustainability of an anaerobic ammonium oxidation (anammox) process in a moving bed biofilm reactor (MBBR) treating highly concentrated (mean of 740 mg NH4 +-N L?1) wastewater was demonstrated by 1600 days of efficient operation. A high maximum total nitrogen removal rate (TNRR) of 1.5 g N m?2 d?1 was achieved at the low temperature of 20 °C. For nitrogen removal recovery in cases of nitrite inhibition, anammox intermediate nitric oxide (NO) was tested in batch experiments as an N-removal accelerating agent. The effect of the addition of various NO dosages (8–72 mg NO-N L?1) was studied under inhibitory nitrite concentrations (>100 mg NO2 ?-N L?1) for anammox bacteria. Optimal maintained NO concentration was 58 mg NO-N L?1 and brought about the highest biofilm-specific anammox activity (SAA). Compared to a blank test, the minimum concentration of added NO of 40 mg NO-N L?1 showed a statistically significant (p < 0.05) accelerating effect on SAA. No inhibition of SAA by NO was observed, although at NO concentrations exceeding 72 mg NO-N L?1, the acceleratory effect upon SAA was decreased by 8%. Changes in the bacterial consortia involved in nitrogen conversion were determined concurrently for the different nitrogen removal rates and operational conditions. Quantities of Planctomycetales clone P4 strains, which are the closest (99% similarity) relative to Candidatus Brocadia fulgida, increased from 1 × 103 to 1 × 106 anammox gene copies per g total suspended solids during reactor operation days 568–1600, which was determined by quantitative polymerase chain reaction. During the operation of the MBBR, the abundance of ammonium-oxidizing bacteria (AOB) increased proportionally (up to 30%). The abundance of nitrite-oxidizing bacteria (NOB) did not increase (remaining below 10%) during days 232–860. AOB became predominant over NOBs owing to the inhibition of free ammonia spiking on NOBs.  相似文献   

9.
Pollution from mining activities is a significant problem in several parts of the Republic of Macedonia. A geochemical study of the surficial sediments of Lake Kalimanci in the eastern part of the Republic of Macedonia was carried out to determine their elemental compositions and to evaluate the pollution status of lake sediments by employing an enrichment factor (EF). The major and trace element contamination in surficial lake sediments was studied to assess the effects of metalliferous mining activities. The mean concentrations of major elements (wt%) Si 23.5, Al 7.9, Fe 6.6, Mg 1.3, Ca 3.8, Na 1.1, K 2.3, Ti 0.4, P 0.2, Mn 0.6 and trace elements ranged within Mo 1.0–4.6 mg kg?1, Cu 144.4–1,162 mg kg?1, Pb 1,874–16,300 mg kg?1, Zn 2,944–20,900 mg kg?1, Ni 21.7–79.3 mg kg?1, Cd 16.5–136 mg kg?1, Sb 0.6–3.6 mg kg?1, Bi 3.0–24,3 mg kg?1 and Ag 1.4–17.3 mg kg?1. The EF ranged within 0.12–590.3. Among which, Cd, Pb, Zn and As have extremely severe enrichment. The data indicate that trace elements had extremely high concentrations in Lake Kalimanci surficial sediments owing to the anthropogenic addition of contaminants.  相似文献   

10.
This study investigates the origin and chemical composition of the thermal waters of Platystomo and Smokovo areas in Central Greece as well as any possible relationships of them to the neighboring geothermal fields located in the south-eastern part of Sperchios basin. The correlations between different dissolved salts and the temperature indicate that the chemical composition of thermal waters are controlled by, the mineral dissolution and the temperature, the reactions due to CO2 that originates possibly by diffusion from the geothermal fields of Sperchios basin and the mixing of thermal waters with fresh groundwater from karst or shallow aquifers. Two major groups of waters are recognized on the basis of their chemistry: thermal waters of Na–HCO3–Cl type and thermal waters mixed with fresh groundwater of Ca–Mg–Na–HCO3 type. All thermal waters of the study area are considered as modified by water–rock interaction rainwater, heated in depth and mixed in some cases with fresh groundwater when arriving to the surface. Trace elements present low concentrations. Lithium content suggests discrimination between the above two groups of waters. Boron geochemistry confirms all the above remarks. Boron concentration ranges from 60 μg L?1 to 10 mg L?1, while all samples’ constant isotopic composition (δ11B ≈ 10 ‰) indicates leaching from rocks. The positive correlation between the chemical elements and the temperature clearly indicates that much of the dissolved salts are derived from water–rock interactions. The application of geothermometers suggests that the reservoir temperature is around 100–110 °C. Chalcedony temperatures are similar to the emergent temperatures and this is typical of convective waters in fault systems in normal thermal gradient areas.  相似文献   

11.
Changes in water chemistry along the High Arctic fluvial–lacustrine system located in Wedel Jarlsberg Land in the SW Spitsbergen (Svalbard) were investigated during the summer season of 2010 and 2011. The newly formed river–lake system consists of three lakes connected with the Brattegg River. The first bathymetric measurements of these lakes were made by the authors in 2010. The Brattegg River catchment represents a partly glaciered Arctic water system. The studied lakes are characterized by low mineralization and temperature of water. The value of the electrolytic conductivity (EC) ranges from 30.2 to 50.5 μS cm?1 and the temperature of surface water from 1.5 to 7.8 °C. The temperature increase takes place downstream starting from Upper Lake to the outflow from Myrktjørna Lake. The waters of lakes have higher temperatures than the stream. The predominant ions are HCO3 ? (up to 16.5 mg L?1), Cl? (6.66–8.53 mg L?1), Ca2+ (2.40–4.45 mg L?1) and Na+ (2.65–3.36 mg L?1). The highest values of ammonium and DOC found in the lowest Myrktjørna Lake seem to be related to the presence of aquatic organisms and also birds. From the group of 10 analyzed microelements, increased concentrations of aluminum, up to almost 500 μg L?1, are present in the lakes’ water. Water isotopic composition ranges for δ18O and δ2H, from ?10.6 to ?10.9‰ and from ?70.8 to ?72.3‰, respectively. The vertical zonality of lake waters is manifested in a decrease in the temperature and increase in EC and chemical elements concentrations.  相似文献   

12.
In the work presented here, a Zr-oxide diffusive gradients in thin films (DGT) was used to monitor the release flux of phosphorus (P), ferrum (Fe), and arsenic (As) in the water–sediment interface of Aibi Lake—a typical shallow lake located in the arid regions of Northwest China. Results showed that: (1) In the water–sediments interface of Aibi Lake, the ranges (average values) of labile As, labile P, and labile Fe levels in DGTs are 3.846–101.840 (43.934) µg L?1, 0.006–0.232 (0.070) mg L?1, and 0.202–52.984 (15.832) mg L?1, respectively. Among 0–20 cm of the vertical profile there was a stable distribution of three elements, while below the interface as 0 cm–(??80) cm there were relatively large changes of these. (2) Fitting analysis showed that there were significant correlations between labile Fe and labile P, and labile As in four DGTs, which showed that in the water–sediments of Aibi Lake, Fe, P, and As are released simultaneously. (3) Combined with former research, we found that the redox of Fe3+ to Fe2+ may cause the release of P and As to the sediments and water body from the former Fe–P and Fe–As; the proportion of P/Fe of four DGTs was all relatively lower than 1, suggesting that the redox of Fe3+ caused the P to be released. (4) This research showed that the concentrations of P, Fe, and As of the water–sediments interface of the lake was obviously lower than that of the water body and sediments of Aibi Lake as well as others of central and eastern China. ZrO-DGT can accurately reflect the distribution of P, Fe, and As of Aibi Lake. These findings can provide initial verification for the use of ZrO-DGT technology in the research of elements at the water–sediment interface in lakes of Xinjiang Province in Northwest China.  相似文献   

13.
Pb-contaminated water is a dangerous threat occurring near metallurgic and mining industries. This circumstance produces serious environment concern, due to Pb(II) high toxic effects. Several reactive materials have been reported for Pb(II) adsorption, but not all reached final Pb(II) suitable concentrations, or they are expensive and rejected in massive remediation technologies; hence, natural materials are good options. The adsorption behavior of a volcanic scoria (two sieved fractions 1425 and <425 µm) was studied toward synthetic Pb(II) water solutions in batch experiments (170.4–912.3 mg L?1) with high removal efficiencies (97%). The Langmuir model fits both fractions with high linear correlation coefficients (0.9988 and 0.9949) with high maximum capacity values (588.23 and 555.55 mg g?1). Separation factor R L parameter varies with initial concentration, and the empirical equation predicts the limits of the material usefulness, a criterion proposed in this paper for conditions’ selection. The Lagergren pseudo-second-order analysis demonstrates chemisorption; calculated rate constant (416.66 mg g?1 min?1). Weber–Morris intraparticle model proves that the adsorption phenomena occur fast on the material surface (k inst = 72 g mg?1 min?0.5). The characterization of the volcanic material afforded the elemental composition (X-ray fluorescence), and the empirical formula was proposed. X-ray diffraction patterns verify the material structure as basalt, with a plagioclase structure that matches anorthite and albite, mostly composed of quartz. The presence of oxides on the material surface explain the high Pb(II) adsorption capacity, observed on the surface by scanning electronic microscopy. The studied volcanic scoria has potential use as a Pb(II) adsorbent in water remediation technologies.  相似文献   

14.
煤矸石堆放对水环境的影响——以山东省一些煤矸石堆为例   总被引:25,自引:0,他引:25  
采集山东省一些煤矿煤矸石及其堆放区水体的样品进行研究 ,可知煤矸石中硫 (主要赋存在黄铁矿中 )的质量分数为 0 2 8%~ 2 9% ,是重要的水质污染源。大量的Si,Al,Fe ,Ca ,Mg等常量元素及含量较高的As,Pb ,Cr,Mn等微量元素都能对水体产生污染 ;煤矸石堆放区水体的pH值为 4 43~7 93,总硬度高 ,SO2 -4 浓度高 (平均为 12 0 1 0 2mg/L ,最高为 2 6 37 6 9mg/L ,超标 10倍多 ) ,微量有毒、有害组分 (Be ,V ,Mn ,Sr ,Mo ,Ni,F等 )均存在超标或浓度过高现象。对风化的与新鲜的煤矸石分别进行浸泡和淋滤实验发现 :黄铁矿的氧化导致了煤矸石堆放区相邻水体的SO2 -4 ,Fe ,Al的浓度增大 ,黄铁矿氧化生成的酸及其与钙镁盐岩的反应致使pH值变化范围大 ,水体的硬度升高 ;煤矸石风化生成的大量酸使淋滤液pH值降低 ,在酸的作用下水中Ca2 + 和Mg2 + 的浓度增大并维持在一定的水平 ,风化使煤矸石中的黄铁矿发生氧化并以可溶性Fe和硫酸盐形式迁移至淋滤液中 ,煤矸石中赋含的多种多环芳烃能迁移到附近的水体中 ,对环境造成大量的有机物污染 ,这一污染应引起有关方面的高度重视。  相似文献   

15.
There are compelling economic and environmental reasons to remove pesticides from wastewater because they are toxic and carcinogenic. The effectiveness of copper-based metal–organic framework (Cu-BTC) for adsorbing the insecticide 14C-ethion from wastewater has been studied as function of contact time, adsorbent dosage, temperature and pH. 14C-ethion/Cu-BTC isotherms exhibit two plateaus (BET type IV) and are reliably represented by Brunauer–Deming–Deming–Teller and Zhu–Gu models, with deviations of only 1.99 and 3.95%, respectively. The removal curve measured under batch operation is well represented by a pseudo-first-order equation, yielding results equivalent to the theoretical linear driving force model of Glueckauf. At pH 7, 75 mg L?1 ethion concentration, 150 min, 25 °C and 0.425 g L?1 Cu-BTC dose, the sorbent capacity is ca. 122 mg g?1. Moreover, Cu-BTC has a good stability after six adsorptions cycles. Finally, our results disclose the fundamental understanding of the adsorption mechanism: the ethion molecule coordinates to two copper(II) atoms across the metal–organic framework channel via the phosphoryl (P–O) group.  相似文献   

16.
Lake Qinghai in the Qinghai-Tibet plateau is the largest lake in China. This study firstly reported the geochemistry of Cd in the lake. Water samples were collected from Lake Qinghai (n = 69) and Buha River (n = 12), while sediment (n = 22) and topsoil (n = 45) samples were collected from the lake and around the lake area, respectively. In addition, pore water samples (n = 20) were separated from sediment samples. Water samples were analyzed for pH, K, Na, Ca, Mg, Cl, S, and Cd, while sediment and topsoil samples were analyzed for K, Na, Ca, Mg, Al, Fe, Mn, S, Sc, and Cd. The average concentration of Cd was 0.014 μg L?1 in the water of Lake Qinghai and 0.007 μg L?1 in the water of Buha River. However, the average concentration of Cd was 0.320 μg L?1 in the sediment pore water, much higher than that in the lake water and river water. Cadmium concentration in the lake water might be mainly controlled by salinity, while it in the pore water might be mainly controlled by carbonate minerals. Cadmium concentration in the river water might be controlled by alkalinity and pH. The average concentration of Cd in the sediment was 0.284 mg kg?1. The enrichment of Cd in the lake sediment was significantly higher than that in the topsoil around the lake. Anthropogenic atmospheric deposition of Cd did not led to the increase in dissolved Cd level in the lake water, but led to its enrichment in the lake sediment.  相似文献   

17.
The present paper undertakes a study of the physico-chemical properties and toxic heavy metals content in the untreated and treated pharmaceutical effluents in order to evaluate the working efficiency of industrial effluent treatment plants. The treatment efficiency achieved for various parameters was conductivity (79.94%), alkalinity (93.91%), hardness (87.70%), chloride (89.24%), cyanide (79.66%), phosphate (99.19%), total dissolved solids (85.89%), total suspended solids (96.87%), salinity (52.41%), dissolved oxygen (27.32%), biochemical oxygen demand (83.39%) and chemical oxygen demand (72.21%). The removal efficiency achieved for different heavy metals was Cu2+ (79.66%), Ni2+ (69.22%), Cr6+ (80.15%), Pb2+ (72.14%), Fe3+ (92.59%) and Zn2+ (90.61%). The level of biochemical oxygen demand (64 mg L?1) in the treated effluents was above the limit of 30.0 mg L?1, chemical oxygen demand level (208 mg L?1) was close to a limit of 250 mg L?1, while average Pb2+ concentration (0.10 mg L?1) was on the borderline of maximum permissible limit of 0.10 mg L?1 set by Central Pollution Control Board for safe discharge of industrial effluent in inland surface water. The average concentration of cyanide (0.01 mg L?1) in the treated industrial effluent of our study is of great concern to the fisheries of freshwater ecosystem in which the effluents finally get discharged. Based on the results of the present study, it is concluded that the pollution level in the discharged pharmaceutical effluent is of the great concern requiring proper treatment and regular scientific monitoring so as to protect the environmental degradation of water resources and facilitate the propagation of the aquatic life.  相似文献   

18.
A simple spectrophotometric method for determination of hydrogen sulfide in wastewater and hot spring samples was developed. The method is based on the reaction between hydrogen sulfide and sodium 1,2-naphthoquinone-4-sulfonate (NQS). The effect of various experimental factors on the reaction between hydrogen sulfide and NQS was investigated and optimized using central composite design. The optimal values of the factors were 5.00 × 10?4 mol L?1 for concentration of NQS and 1.00 × 10?2 mol L?1 for concentration of hydrochloric acid. The wavelength of the maximum absorption of the reaction product was 320 nm. Constructed calibration curve for hydrogen sulfide determination was linear in the range of 0.5–20.0 mg L?1 with the detection limit of 0.16 mg L?1. The method was free from interferences. Percent relative errors below 2 % were obtained for determination of hydrogen sulfide in environmental samples.  相似文献   

19.
The Choptank River, Chesapeake Bay’s largest eastern-shore tributary, is experiencing increasing nutrient loading and eutrophication. Productivity in the Choptank is predominantly nitrogen-limited, and most nitrogen inputs occur via discharge of high-nitrate groundwater into the river system’s surface waters. However, spatial patterns in the magnitude and quality of groundwater discharge are not well understood. In this study, we surveyed the activity of 222Rn, a natural groundwater tracer, in the Choptank’s main tidal channel, the large tidal tributary Tuckahoe Creek, smaller tidal and non-tidal tributaries around the basin, and groundwater discharging into those tributaries, measuring nitrate and salinity concurrently. 222Rn activities were <100 Bq m?3 in the main tidal channel and 100–700 Bq m?3 in the upper Choptank River and Tuckahoe Creek, while the median Rn activities of fresh tributaries and discharging groundwater were 1,000 and 7,000 Bq m?3, respectively. Nitrate-N concentrations were <0.01 mg L?1 throughout most of the tidal channel, 1.5–3 mg L?1 in the upper reaches, up to 13 mg L?1 in tributary samples, and up to 19.6 mg L?1 in groundwater. Nitrate concentrations in tributary surface water were correlated with Rn activity in three of five sub-watersheds, indicating a groundwater nitrate source. 222Rn and salinity mass balances indicated that Rn-enriched groundwater discharges directly into the Choptank’s tidal waters and suggested that it consists of a mixture of fresh groundwater and brackish re-circulated estuarine water. Further sampling is necessary to constrain the Rn activity and nitrate concentration of discharging groundwater and quantify direct discharge and associated nitrogen inputs.  相似文献   

20.
Chemical data on groundwater composition in rhyolitic hard rock aquifers with limited global occurrence are rarely found. In this research geochemistry of Mahabad Rhyolite Aquifer, NW Iran, was studied considering major ions, silica and trace elements measured in wet and dry seasons. Based on the results, the mean silica content was 18 mg l?1, less than the average of the rhyolitic waters. However, the relatively higher electrical conductivity (EC) of 418 µS cm?1 was measured. Based on a PHREEQCI model, the weathering of the silicate minerals and dissolution of carbonated intercalations turns groundwater dominantly into Ca–HCO3 type, enhancing EC, pH and silica concentration along the flow path. Trace elements of Sr, Ba and Pb were measured at highest concentrations, the later with an average value of 83 ppb exceeds the drinking guidelines. Cluster analysis confirms biotite weathering and barite dissolution as the main sources of the trace elements in the groundwater. The results signify geochemical features of rhyolitic groundwater which can be a useful tracer of mixing in flow systems containing variety of aquifers including rhyolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号