首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In aquatic environment, iron redox reaction may occur through a) microbial activity and b) photo-chemistry. Iron chemistry plays a significant role in the health of aquatic ecosystems. For example, Fe^2+ is more mobile than Fe^3+. Iron can be bound to dissolved organic carbon (DOC), and when Fe^2+ is oxidized to Fe^3+ (biotically or abiotically), Fe is precipitated and induce co-precipitation of the DOC. Furthermore, iron is a major nutrient to aquatic organisms. Because Fe^2+ is more bioavailable than Fe^3+, iron redox chemistry can be a controlling factor in biological production, such as algae bloom which can be a public health concern. Experiments have shown that Fe redox reactions, biotically or abiotically, can generate significant Fe isotope fraction among different Fe species. Accordingly, analysis of Fe isotope composition of phytoplanktons can be a valuable tool in studying Fe dynamics in ecosystems. Precise measurement of Fe isotope, however, presents some challenges. Recent advances in mass spectrometry, specifically high resolution MC-ICP-MS, allow measurement of Fe isotopes free of interferences.  相似文献   

2.
In this study potential iron isotope fractionation by magmatic processes in the Earth's crust was systematically investigated. High precision iron isotope analyses by MC-ICP-MS were performed on a suite of rock samples representative for the volcanic evolution of the Hekla volcano, Iceland. The whole series of Hekla's rocks results from several processes. (i) Basaltic magmas rise and induce partial melting of meta-basalts in the lower part of the Icelandic crust. The resulting dacitic magma evolves to rhyolitic composition through crystal fractionation. During this differentiation the δ56/54FeIRMM-014 values increase successively from 0.051 ± 0.021‰ for the primitive dacites to 0.168 ± 0.021‰ for the rhyolites. This increase can be described by a Rayleigh fractionation model using a constant bulk fractionation factor between all mineral phases (M) and the silicate liquid (L) of Δ56/54FeM–L = ? 0.1‰. (ii) The basaltic magma itself differentiates by crystal fractionation to basaltic andesite composition. No Fe isotope fractionation was found in this series. All basalts and basaltic andesites have an average δ56/54FeIRMM-014 value of 0.062 ± 0.042‰ (2SD, n = 9), identical to mean terrestrial basaltic values reported in previous studies. This observation is consistent with the limited removal of iron from the remaining silicate melt through crystal fractionation and small mineral-melt Fe isotope fractionation factors expected at temperatures in excess of 1050 °C. (iii) Andesites are produced by mixing of basaltic andesite with dacitic melts. The iron isotope composition of the andesites is matching that of the basaltic andesites and the less evolved dacites, in agreement with a mixing process. In the Hekla volcanic suite Li concentrations are positively correlated with indicators of magma differentiation. All Hekla rocks have δ7Li values typical for the upper mantle and demonstrate the absence of resolvable Li isotope fractionation during crystal fractionation. As a fluid-mobile trace element, Li concentrations and isotopes are a potential tracer of magma/fluid interaction. At Hekla, Li concentrations and isotope compositions do not indicate any extensive fluid exsolution. Hence, the heavy Fe isotope composition of the dacites and rhyolites can be predominately attributed to fractional crystallisation. Iron isotope analyses on single samples from other Icelandic volcanoes (Torfajökull, Vestmannaeyjar) confirm heavy Fe isotope enrichment in evolving magmas. Our results suggest that the iron isotope composition of highly evolved crust can be slightly modified by magmatic processes.  相似文献   

3.
4.
During the last decade boron isotopic compositions have been successfully used as a geochemical tracer in oceanic paleo-pH reconstruction and paleo-climatologic studies. All the pH-proxy investigations were based on the assumption that the boron concentra…  相似文献   

5.
6.
7.
Fang  Tong  Liu  Yun 《中国地球化学学报》2019,38(4):459-471

Equilibrium isotope fractionation of thallium (Tl) includes the traditional mass-dependent isotope fractionation effect and the nuclear volume effect (NVE). The NVE dominates the overall isotope fractionation, especially at high temperatures. Heavy Tl isotopes tend to be enriched in oxidized Tl3+-bearing species. Our NVE fractionation results of oxidizing Tl+ to Tl3+ can explain the positive enrichments observed in ferromanganese sediments. Experimental results indicate that there could be 0.2–0.3 ε-unit fractionation between sulfides and silicates at 1650 °C. It is consistent with our calculation results, which are in the range of 0.17–0.38 ε-unit. Importantly, Tl’s concentration in the bulk silicate Earth (BSE) can be used to constrain the amount of materials delivered to Earth during the late veneer accretion stage. Because the Tl concentration in BSE is very low and its Tl isotope composition is similar with that of chondrites, suggesting either no Tl isotope fractionation occurred during numerous evaporation events, or the Tl in current BSE was totally delivered by late veneer. If it is the latter, the Tl-content-based estimation could challenge the magnitude of late veneer which had been constrained by the amount of highly siderophile elements in BSE. Our results show that the late-accreted mass is at least five-times larger than the previously suggested magnitude, i.e., 0.5 wt% of current Earth’s mass. The slightly lighter 205Tl composition of BSE relative to chondrites is probable a sign of occurrence of Tl-bearing sulfides, which probably were removed from the mantle in the last accretion stage of the Earth.

  相似文献   

8.
Hydrogen isotopes are commonly fractionated to a much greater extent and as a result display larger variations in δ values, In terms of the hydrogen isotope ratios of individual n-alkanes of 16 samples of modern sediments selected from four different locations in the southern part of Gansu, China, the δD values for most of the n-alkanes varied from -150‰-300‰, Variations in δD also occurred between different ranges of n-alkanes, effects of environmental changes on the hydrogen isotopic compositions of individual n-alkanes have been detected. Besides the δD values of n-alkanes, the δD values of lipids including pristane (Pr), phytane (Ph) were also examined, by the combination of D/H ratios with molecular fingerprinting, Our results further support the notion that hydrogen isotopes of n-alkanes from modern sediments can act as paleoclimatic and paleoenvironmental proxies and provide invaluable new sources of information in the research of paleoenvironment reconstruction.  相似文献   

9.
Lake sediments can provide important historical information on records of paleoenvironments and paleoclimates and their changes.This study deals with the sedimentary history of the westem Taihu Lake based on seven geochemical indices measured in an 89-cm long sediment core. The core, corresponding to a time period from 6870 a B.P. to the present, was analyzed for δ^13Corg, δ^15N, TOC, TN, TP, C/N ratio and radiocarbon dates. Comparison of these multiple geochemical tracers helps to improve interpretations of the paleoenvironmental changes. All of the geochemical proxies used in the study change regularly, and show four major time scales that suggest different environments. During 6870-6532 a B.P., the values of all parameters slightly varied. δ^13Corg values increased in a wave pattern from -25.9‰ to -20.7‰. Similarly, δ^15N values increased from 1.6‰ to 4.5‰. TOC, TN and TP concentrations remained around 0.8%, 0.1%-3.2% and 0.5%, respectively. C/N ratios varied from 20.6 to 6.6. At 6370 a B.P., the sediment record profile showed dramatic variations in all parameters. δ^13Corg and δ^15N values dropped to -26.9‰ and 1.3‰, respectively.  相似文献   

10.
In soils, silicon released by mineral weathering can be retrieved from soil solution through clay formation, Si adsorption onto secondary oxides and plant uptake, thereby impacting the Si-isotopic signature and Ge/Si ratio of dissolved Si (DSi) exported to rivers. Here we use these proxies to study the contribution of biogenic Si (BSi) in a soil-plant system involving basaltic ash soils differing in weathering degree under intensive banana cropping. δ30Si and Ge/Si ratios were determined in bulk soils (<2 mm), sand (50-2000 μm), silt (2-50 μm), amorphous Si (ASi, 2-50 μm) and clay (<2 μm) fractions: δ30Si by MC-ICP-MS Nu Plasma in medium resolution, operating in dry plasma with Mg doping (δ30Si vs. NBS28 ± 0.12‰ ± 2σSD), Ge/Si computed after determination of Ge and Si concentrations by HR-ICP-MS and ICP-AES, respectively. Components of the ASi fraction were quantified by microscopic counting (phytoliths, diatoms, ashes). Compared to fresh ash (δ30Si = −0.38‰; Ge/Si = 2.21 μmol mol−1), soil clay fractions (<2 μm) were enriched in light Si isotopes and Ge: with increasing weathering degree, δ30Si decreased from −1.19 to −2.37‰ and Ge/Si increased from 4.10 to 5.25 μmol mol−1. Sand and silt fractions displayed δ30Si values close to fresh ash (−0.33‰) or higher due to saharian dust quartz deposition, whose contribution was evaluated by isotopic mass balance calculation. Si-isotopic signatures of bulk soils (<2 mm) were strongly governed by the relative proportions of primary and secondary minerals: the bulk soil Si-isotopic budget could be closed indicating that all the phases involved were identified. Microscopic counting highlighted a surface accumulation of banana phytoliths and a stable phytolith pool from previous forested vegetation. δ30Si and Ge/Si values of clay fractions in poorly developed volcanic soils, isotopically heavier and Ge-depleted in surface horizons, support the occurrence of a DSi source from banana phytolith dissolution, available for Si sequestration in clay-sized secondary minerals (clay minerals formation and Si adsorption onto Fe-oxide). In the soil-plant system, δ30Si and Ge/Si are thus highly relevant to trace weathering and input of DSi from phytoliths in secondary minerals, although not quantifying the net input of BSi to DSi.  相似文献   

11.
Banded iron formations (BIFs) within the Lvliang region of Shanxi Province, China, are hosted by sediments of the Yuanjiacun Formation, part of the Paleoproterozoic Lvliang Group. These BIFs are located in a zone where sedimentation changed from clastic to chemical deposition, indicating that these are Superior-type BIFs. Here, we present new major, trace, and rare earth element (REE) data, along with Fe, Si, and O isotope data for the BIFs in the Yuanjiacun within the Fe deposits at Yuanjiacun, Jianshan, and Hugushan. When compared with Post Archean Australian Shale (PAAS), these BIFs are dominated by iron oxides and quartz, contain low concentrations of Al2O3, TiO2, trace elements, and the REE, and are light rare earth element (LREE) depleted and heavy rare earth element (HREE) enriched. The BIFs also display positive La, Y, and Eu anomalies, high Y/Ho ratios, and contain 30Si depleted quartz, with high δ18O values that are similar to quartz within siliceous units formed during hydrothermal activity. These data indicate that the BIFs within the Yuanjiacun Formation were precipitated from submarine hydrothermal fluids, with only negligible detrital contribution. None of the BIF samples analyzed during this study have negative Ce anomalies, although a few have a positive Ce anomaly that may indicate that the BIFs within the Yuanjiacun Formation formed during the Great Oxidation Event (GOE) within a redox stratified ocean. The positive Ce anomalies associated with some of these BIFs are a consequence of oxidization and the formation of surficial manganese oxide that have preferentially adsorbed Ho, LREE, and Ce4 +; these deposits formed during reductive dissolution at the oxidation–reduction transition zone or in deeper-level reducing seawater. The loss of Ce, LREE, and Ho to seawater and the deposition of these elements with iron hydroxides caused the positive Ce anomalies observed in some of the BIF samples, although the limited oxidizing ability of surface seawater at this time meant that Y/Ho and LREE/HREE ratios were not substantially modified, unlike similar situations within stratified ocean water during the Late Paleoproterozoic. Magnetite and hematite within the BIFs in the study area contain heavy Fe isotopes (56Fe values of 0.24–1.27‰) resulting from the partial oxidation and precipitation of Fe2 + to Fe3 + in seawater. In addition, mass-independent fractionation of sulfur isotopes within pyrite indicates that these BIFs were deposited within an oxygen-deficient ocean associated with a similarly oxygen-deficient atmosphere, even though the BIFs within the Yuanjiacun Formation formed after initiation of the GOE.  相似文献   

12.
Compound-specific ^13C/^12C isotope ratio measurements have successfully been demonstrated as a valuable technique for polycyclic aromatic hydrocarbons (PAHs) source apportionment in a number of studies. However, under certain circumstances, where the PAils matrix has been subjected to heavy biodegradation/phytoremediation, and the isotopic signatures for PAHs are overlapping for some sources, further constraints are needed for unambiguous source apportionment. It has been shown that asphaltenes retain useful molecular and isotopic information of biogeochemical significance for oil-source rock correlation (1-3), which can be accessed via hydropyrolysis. Given that stable isotopic ratios of PAHs are not significantly affected by biodegradation and that hydropyrolysis of asphaltenes can generate representative molecular profiles expected for non-biodegraded oils, this has enabled an analytical methodology combining hydropyrolysis and compound-specific stable isotope measurements to be developed for source apportioning hydrocarbons in biodegraded environmental samples. In this study, the PAHs released from hydropyrolysis of asphaltenes from a variety of primary sources (e.g. crude oils, low and high temperature coal tars, and river sediments) were characterized in regard to their molecular distributions and ^13C/^12C isotope ratios. Application to samples previously examined from an area close to a former carbonization plant is described where unambiguous source apportionment could not be achieved previously for the PAHs due to likely environmental alternation (3). For both low and high temperature coal tar, the molecular profiles for bound aromatics are broadly similar to their free aromatic counterparts. The stable carbon isotope ratios for the major PAH components present in bound aromatics (-23‰) are significantly more enriched in ^13C than the free aromatics (-26‰),  相似文献   

13.
The pressure responses of portlandite and the isotope effect on the phase transition were investigated at room temperature from single-crystal Raman and IR spectra and from powder X-ray diffraction using diamond anvil cells under quasi-hydrostatic conditions in a helium pressure-transmitting medium. Phase transformation and subsequent peak broadening (partial amorphization) observed from the Raman and IR spectra of Ca(OH)2 occurred at lower pressures than those of Ca(OD)2. In contrast, no isotope effect was found on the volume and axial compressions observed from powder X-ray diffraction patterns. X-ray diffraction lines attributable to the high-pressure phase remained up to 28.5 GPa, suggesting no total amorphization in a helium pressure medium within the examined pressure region. These results suggest that the H–D isotope effect is engendered in the local environment surrounding H(D) atoms. Moreover, the ratio of sample-to-methanol–ethanol pressure medium (i.e., packing density) in the sample chamber had a significant effect on the increase in the half widths of the diffraction lines, even at pressures below the hydrostatic limit of the pressure medium.  相似文献   

14.
The age-accumulation effect of 40Ar in hydrocarbon source rocks was discussed in accordance with the decay law of radioactive elements. In terms of the mean values of 40Ar/36Ar, the old Sinian gas reservoirs (mean values of 40Ar/36Ar: 7009) were definitely distinguished from the Permian gas reservoirs (mean values of 40Ar/36Ar: 1017) in Weiyuan, Sichuan Province, and the gas source of the Permian gas reservoir (mean values of 40Ar/36Ar: 5222) in well Wei-7 with the Weiyuan structure is defined as the Sinian system. Based on the values of 40Ar/36Ar, the coal-type gases (The source rocks are of the C-P system; mean values of 40Ar/36Ar: 1125) are definitely distinguished from the oil-type gases (The source rocks are of the Tertiary system; mean values of 40Ar/36Ar: 590) in the Tertiary reservoirs of the Zhongyuan Oilfield. Besides, 40Ar/36Ar values also have a positive effect on the oil-source correlation of oil reservoirs in ancient hidden mountains. According to the crust-mantle interchange information reflected by 3He/4He values, petroliferous provinces in China can be divided into three major tectonic regions. (1) The eastern active region: The crust-mantle volatile matter exchanges actively, and the 3He/4He values are mainly around 10-6, partly around 10-7. (2) The central stable region: The 3He/4He values are all around 10-8. (3) The western sub-stable region: The 3He/4He values are mainly around 10-8, and around 10-7 on the edges of the basins. Helium contents of some gas wells in China’s eastern petroliferous region reach the industrial abundance (He≈0.05%–0.1%), the 3He/4He values reach 10-6, and the equivalent values for the mantle-source components in helium gas can reach 30%–50%. As viewed from this, a new type of crust-mantle composite helium resources has been proposed. Geneses of some CO2 gas reservoirs in the east of China and some issues concerning mantle-source methane were discussed in the light of the helium and carbon isotopes of CO2 and CH4 in natural gases. In the discussion on helium isotopic characteristics of inclusions in the reservoirs, it was discovered that the 3He/4He values are close to those in natural gases. That is to say, this phenomenon is related to regional tectonism. The 3He/4He, CO2/3He and CH4/3He data were used to discuss the tectonic activities of fault zones in a certain number of regions in China.  相似文献   

15.
Studies on the helium, lead and sulfur isotopic composition were performed of the Gejiu super-large Sn-polymetallic ore deposit. The results indicated that the ore-forming materials came from different sources and the deposit is a product of superimposed mineralization. The deposit is characterized by multi-source and multi-period mineralization, which experienced submarine hydrothermal deposition and Late Yanshanian magmatic hydrothermal mineralization. It is held that the Gejiu super-large Sn-polymetallic ore deposit is a multi-genesis deposit.  相似文献   

16.
In this study, the δ^13C and δ^18O values were systematically measured on NBS-18, NBS-19 and IAEA-CO-1 with different sample sizes, with the objective to examine the stability and reproducibility of previously developed linearity correction strategy especially for small-sized samples (e.g. 〈50 μg). Firstly, the δ^13C and δ^18O values of NBS-19 standards (6-10 samples per run) with sample sizes scattered below -100 μg were determined in three different runs. The logarithmic regressions were performed on the plots of δ-values vs. peak area (sample size) for each run and the correction was applied using peak area of the first peak. Results show that two of the three data sets have almost the same regressive equations for both δ^13C and δ^18O values. The maximum difference in δ^13C values calculated by three equations when sample size varies between -10 and -100 μg is better than 0.15‰, compared with the maximum 0.82‰ for δ^18O values. Since alteration of phosphoric acids could not influence carbon isotope, the 〈0.15‰ difference in calculated δ^13C values should reflect the stability of mass spectrometer conditions. In contrast, the large difference in regressive equations for δ^18O values may be attributed to changed oxygen isotope in phosphoric acids due to exchange with atmosphere through time. It means that standards with sample sizes properly distributed should be arranged in every run for subsequent linearity correction of δ^18O values of small-sized samples (e.g. marine ostracode).  相似文献   

17.
A combined Sr, O and C isotope study has been carried out in the Pucará basin, central Peru, to compare local isotopic trends of the San Vicente and Shalipayco Zn-Pb Mississippi Valley-type (MVT) deposits with regional geochemical patterns of the sedimentary host basin. Gypsum, limestone and regional replacement dolomite yield 87Sr/86Sr ratios that fall within or slightly below the published range of seawater 87Sr/86Sr values for the Lower Jurassic and the Upper Triassic. Our data indicate that the Sr isotopic composition of seawater between the Hettangian and the Toarcian may extend to lower 87Sr/86Sr ratios than previously published values. An 87Sr-enrichment is noted in (1) carbonate rocks from the lowermost part of the Pucará basin, and (2) different carbonate generations at the MVT deposits. This indicates that host rocks at MVT deposits and in the lower-most part of the carbonate sequence interacted with 87Srenriched fluids. The fluids acquired their radiogenic nature by interaction with lithologies underlying the carbonate rocks of the Pucará basin. The San Ramón granite, similar Permo-Triassic intrusions and their clastic derivatives in the Mitu Group are likely sources of radiogenic 87Sr. The Brazilian shield and its erosion products are an additional potential source of radiogenic 87Sr. Volcanic rocks of the Mitu Group are not a significant source for radiogenic 87Sr; however, molasse-type sedimentary rocks and volcaniclastic rocks cannot be ruled out as a possible source of radiogenic 87Sr. The marked enrichment in 87Sr of carbonates toward the lower part of the Pucará Group is accompanied by only a slight decrease in 18O values and essentially no change in 13C values, whereas replacement dolomite and sparry carbonates at the MVT deposits display a coherent trend of progressive 87Sr-enrichment, and 18O- and 13C-depletion. The depletion in 18O in carbonates from the MVT deposits are likely related to a temperature increase, possibly coupled with a 18O-enrichment of the ore-forming fluids. Progressively lower 13C values throughout the paragenetic sequence at the MVT deposits are interpreted as a gradually more important contribution from organically derived carbon. Quantitative calculations show that a single fluid-rock interaction model satisfactorily reproduces the marked 87Sr-enrichment and the slight decrease in 18O values in carbonate rocks from the lower part of the Pucará Group. By contrast, the isotopic covariation trends of the MVT deposits are better reproduced by a model combining fluid mixing and fluid-rock interaction. The modelled ore-bearing fluids have a range of compositions between a hot, saline, radiogenic brine that had interacted with lithologies underlying the Pucará sequence and cooler, dilute brines possibly representing local fluids within the Pucará sequence. The composition of the local fluids varies according to the nature of the lithologies present in the neighborhood of the different MVT deposits. The proportion of the radiogenic fluid in the modelled fluid mixtures interacting with the carbonate host rocks at the MVT deposits decreases as one moves up in the stratigraphic sequence of the Pucará Group.  相似文献   

18.
Oxygen isotope exchange between minerals during metamorphism can occur in either the presence or the absence of aqueous fluids. Oxygen isotope partitioning among minerals and fluid is governed by both chemical and isotopic equilibria during these processes, which progress by intragranular and intergranular diffusion as well as by surface reactions. We have carried out isotope exchange experiments in two- and three-phase systems, respectively, between calcite and tremolite at high temperatures and pressures. The two-phase system experiments were conducted without fluid either at 1 GPa and 680 °C for 7 days or at 500 MPa and 560 °C for 20 days. Extrapolated equilibrium fractionations between calcite and tremolite are significantly lower than existing empirical estimates and experimental determinations in the presence of small amounts of fluid, but closely match calculated fractionations by means of the increment method for framework oxygen in tremolite. The small fractionations measured in the direct calcite–tremolite exchange experiments are interpreted by different rates of oxygen isotope exchange between hydroxyl oxygen, framework oxygen and calcite during the solid–solid reactions where significant recrystallization occurs. The three-phase system experiments were accomplished in the presence of a large amount of fluid (CO2+H2O) at 500 MPa and 560 °C under conditions of phase equilibrium for 5, 10, 20, 40, 80, 120, 160, and 200 days. The results show that oxygen isotope exchange between minerals and fluid proceeds in two stages: first, through a mechanism of dissolution-recrystallization and very rapidly; second, through a mechanism of diffusion and very slowly. Synthetic calcite shows a greater rate of isotopic exchange with fluid than natural calcite in the first stage. The rate of oxygen diffusion in calcite is approximately equal to or slightly greater than that in tremolite in the second stage. A calculation using available diffusion coefficients for calcite suggests that grain boundary diffusion, rather than volume diffusion, has been the dominant mechanism of oxygen transport between the fluid and the mineral grains in the later stage.Editorial responsibility: T.L. Grove  相似文献   

19.
The pre-Cenozoic geology at Candelaria, Nevada comprises four main lithologic units: the basement consists of Ordovician cherts of the Palmetto complex; this is overlain unconformably by Permo-Triassic marine clastic sediments (Diablo and Candelaria Formations); these are structurally overlain by a serpentinitehosted tectonic mélange (Pickhandle/Golconda allochthon); all these units are cut by three Mesozoic felsic dike systems. Bulk-mineable silver-base metal ores occur as stratabound sheets of vein stockwork/disseminated sulphide mineralisation within structurally favourable zones along the base of the Pickhandle allochthon (i.e. Pickhandle thrust and overlying ultramafics/mafics) and within the fissile, calcareous and phosphatic black shales at the base of the Candelaria Formation (lower Candelaria shear). The most prominent felsic dike system — a suite of Early Jurassic granodiorite porphyries — exhibits close spatial, alteration and geochemical associations with the silver mineralisation. Disseminated pyrites from the bulk-mineable ores exhibit a 34S range from — 0.3 to + 12.1 (mean 34S = +6.4 ± 3.5, 1, n = 17) and two sphalerites have 34S of + 5.9 and + 8.7 These data support a felsic magmatic source for sulphur in the ores, consistent with their proximal position in relation to the porphyries. However, a minor contribution of sulphur from diagenetic pyrite in the host Candelaria sediments (mean 34S = — 14.0) cannot be ruled out. Sulphur in late, localised barite veins ( 34S = + 17.3 and + 17.7) probably originated from a sedimentary/seawater source, in the form of bedded barite within the Palmetto basement ( 34S = + 18.9). Quartz veins from the ores have mean 18O = + 15.9 ± 0.8 (1, n = 10), which is consistent, over the best estimate temperature range of the mineralisation (360°–460°C), with deposition from 18O-enriched magmatic-hydrothermal fluids (calculated 18O fluid = + 9.4 to + 13.9). Such enrichment probably occurred through isotopic exchange with the basement cherts during fluid ascent from a source pluton. Whole rock data for a propylitised porphyry ( 18O = + 14.2, D = — 65) support a magmatic fluid source. However, D results for fluid inclusions from several vein samples (mean = — 108 ± 14, 1, n = 6) and for other dike and sediment whole rocks (mean = — 110 ± 13, 1, n = 5) reveal the influence of meteoric waters. The timing of meteoric fluid incursion is unresolved, but possibilities include late-mineralisation groundwater flooding during cooling of the Early Jurassic progenitor porphyry system and/or meteoric fluid circulation driven by Late Cretaceous plutonism.  相似文献   

20.
Vanadium has multiple oxidation states in silicate melts and minerals, a property that also promotes fractionation of its isotopes. As a result, vanadium isotopes vary during magmatic differentiation, and can be powerful indicators of redox processes at high temperatures if their partitioning behaviour can be determined. To quantify the partitioning and isotope fractionation factor of V between magnetite and melt, piston cylinder experiments were performed in which magnetite and a hydrous, haplogranitic melt were equilibrated at 800 °C and 0.5 GPa over a range of oxygen fugacities (\({f_{{{\text{O}}_{\text{2}}}}}\)), bracketing those of terrestrial magmas. Magnetite is isotopically light with respect to the coexisting melt, a tendency ascribed to the VI-fold V3+ and V4+ in magnetite, and a mixture of IV- and VI-fold V5+ and V4+ in the melt. The magnitude of the fractionation factor systematically increases with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\) relative to the Fayalite–Magnetite–Quartz buffer (FMQ), from ?51Vmag-gl = ? 0.63?±?0.09‰ at FMQ ? 1 to ? 0.92?±?0.11‰ (SD) at ≈?FMQ?+?5, reflecting constant V3+/V4+ in magnetite but increasing V5+/V4+ in the melt with increasing log\({f_{{{\text{O}}_{\text{2}}}}}\). These first mineral-melt measurements of V isotope fractionation factors underline the importance of both oxidation state and co-ordination environment in controlling isotopic fractionation. The fractionation factors determined experimentally are in excellent agreement with those needed to explain natural isotope variations in magmatic suites. Furthermore, these experiments provide a useful framework in which to interpret vanadium isotope variations in natural rocks and magnetites, and may be used as a potential fingerprint the redox state of the magma from which they crystallise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号