首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Re–Os (rhenium–osmium) chronometer applied to molybdenite (MoS2) is now demonstrated to be remarkably robust, surviving intense deformation and high‐grade thermal metamorphism. Successful dating of molybdenite is dependent on proper preparation of the mineral separate and analysis of a critical quantity of molybdenite, unique to each sample, such that recognized spatial decoupling of 187Re parent and 187Os daughter within individual molybdenite crystals is overcome. Highly precise, accurate and reproducible age results are derived through isotope dilution and negative thermal ion mass spectrometry (ID‐NTIMS). Spatial decoupling of parent–daughter precludes use of the laser ablation ICP‐MS microanalytical technique for Re–Os dating of molybdenite. The use of a reference or control sample is necessary to establish laboratory credibility and for interlaboratory comparisons. The Rb–Sr, K–Ar and 40Ar/39Ar chronometers are susceptible to chemical and thermal disturbance, particularly in terranes that have experienced subsequent episodes of hydrothermal/magmatic activity, and therefore should not be used as a basis for establishing accuracy in Re–Os dating of molybdenite, as has been done in the past. Re–Os ages for molybdenite are almost always in agreement with observed geological relationships and, when available, with zircon and titanite U–Pb ages. For terranes experiencing multiple episodes of metamorphism and deformation, molybdenite is not complicated by overgrowths as is common for some minerals used in U–Pb dating (e.g. zircon, monazite, xenotime), nor are Re and Os mobilized beyond the margins of individual crystals during solid‐state recrystallization. Moreover, inheritance of older molybdenite cores, incorporation of common Os, and radiogenic Os loss are exceedingly rare, whereas inheritance, common Pb and Pb loss are common complications in U–Pb dating techniques. Therefore, molybdenite ages may serve as point‐in‐time markers for age comparisons.  相似文献   

2.
The Lavrion ore district contains carbonate-replacement and vein-type Pb–Zn–Ag deposits as well as low-grade porphyry Mo, Cu–Fe skarn, and minor breccia-hosted Pb–Zn–Cu sulfide mineralization. These ore types are spatially related to a Late Miocene granodiorite intrusion (7 to 10 Ma), and various sills and dikes of mafic to felsic composition. Samples of sphalerite and pyrite from the Ilarion carbonate replacement deposit, and galena from Vein 80 (vein-type mineralization) in the Adami deposit show heterogeneous Re–Os values. These values were partially disturbed by hydrothermal activity associated with the formation of hydrothermal veins (e.g., Vein 80). A plot of initial 187Os/188Os versus 1/Oscommon ratios for pyrite and sphalerite from the Ilarion deposit form a mixing line (r2?=?0.78) between high concentration crustal-like and low concentration mantle-like end-members, or two crustal end-members one of which was more radiogenic than the other. Based on the Re–Os systematics and previously published geological and geochemical evidence, the most plausible explanation for the Re–Os isotope data is that ore-forming components were derived from mixed sources, one of which was a radiogenic crustal source from schists and carbonates probably near intrusion centers and the other, intrusive rocks in the district that are less radiogenic. Although the Re and Os concentrations of galena from Vein 80 are above background values they cannot be used as a chronometer. However, the results of the current study suggest that although pyrite, sphalerite, and galena are poor geochronometers in this ore deposit, due to partial open-system behavior, they still yield valuable information on the origin of the source rocks in the formation of bedded replacement and vein mineralization in the Lavrion district.  相似文献   

3.
The Yushui Cu-polymetallic deposit, which is associated with Ag, Pb, and Zn, is located in the middle part of the Yongan–Meixian Late Paleozoic Hercynian depression. It was discovered in eastern Guangdong Province in the late 1980s and is one of the richest copper deposits in China with high-grade copper averaging 3.25% and locally reaching 50–60%. The main ore body is located along the unconformity between the Upper Carboniferous Hutian Group limestone and the Lower Carboniferous Zhongxin Formation quartz sandstone with a bedded and lenticular morphology. The ores exhibit massive textures dominated by chalcopyrite, bornite, chalcocite, pyrite, sphalerite, galena, and a trace amount of argentite. Although researchers began studying the Yushui deposit in the early 1990s, the ore genesis remains controversial because of the lack of precise mineralisation age constraints. In this study, direct Re–Os dating of Cu sulphides aided in facilitating a better understanding of the timing of formation of the Yushui deposit. This study is the first attempt to use the Re–Os isotopic system for directly dating chalcopyrite and bornite ores for the Yushui deposit. The contents of Re, common Os, 187Re and 187Os in nine sulphides are 1.68–219.35 ppb, 0.003–0.427 ppb, 1.05–137.31 ppb, and 0.045–0.734 ppb, respectively. The isotope data yielded an isochron age of 308 ± 15 Ma (mean square weighted deviates = 2.4) using the 87Re/188Os–187Os/188Os plot, which is interpreted to represent the age of formation for these sulphides, suggesting that the mineralisation age of the Yushui deposit is close to the age of the host rocks. The 187Os/188Os initial value obtained from the Re–Os isochron is 1.81 ± 0.34, which corresponds to the γOs value of + 1349. This value indicates that the ore-forming materials were derived from the crust without mixing with materials from the mantle, and that the Yushui massive sulphide deposit may be of sedimentary exhalative origin.  相似文献   

4.
镁铁-超镁铁岩铼-锇同位素体系分析方法   总被引:11,自引:5,他引:11  
通过试验建立了镁铁-超镁铁岩Re-Os同位素体系分析方法,包括Re-Os的化学分离纯化流程,Re同位素比值的电感耦合等离子体质谱测量方法和Os同位素比值的负离子热电离质谱测量方法。化学流程包括Carius管溶样,小型蒸馏分离Os,微蒸馏纯化Os,阴离子交换法分离、纯化Re。用该流程测定了汉诺坝幔源橄榄岩、辉石岩捕虏体和大别山饶拔寨超镁铁岩样品的Re、Os含量和Os同位素比值。  相似文献   

5.
铼-锇同位素分析样品预处理研究进展   总被引:1,自引:0,他引:1  
黄小文  漆亮  高剑峰 《岩矿测试》2011,30(1):90-103
文章评述并归纳了近年来地质样品中Re-Os同位素分析的化学前处理方法研究进展。总结了锍镍火试金法、碱熔法、Carius管溶样法以及HPA-S高温高压釜溶样法等常用的Re-Os同位素样品消解方法。归纳了离子交换、溶剂萃取富集Re以及蒸馏、萃取等分离富集Os的方法。由于地质样品的复杂性,Re、Os含量的不均一性及测试方法的多样性,要求在具体分析过程中不同的样品使用不同的消解方法和分离富集方法。当前国内应用较成熟的Re、Os分离方法是Carius管逆王水分解样品,原位蒸馏或CCl4萃取方法分离Os,阴离子交换法或丙酮萃取分离Re。  相似文献   

6.
A comprehensive method for the precise determination of Re, Os, Ir, Ru, Pt and Pd concentrations as well as Os isotopic compositions in geological samples is presented. Samples were digested by the Carius tube method, and the Os was extracted by conventional CCl4 method. The Re, Ir, Ru, Pt and Pd were first subgroup separated from the matrix elements into Re‐Ru, Ir‐Pt and Pd by a 2‐ml anion exchange column. Subsequently, the Re‐Ru was further purified by a secondary 0.25 ml anion exchange column or by microdistillation of Ru using CrO3‐H2SO4 as an oxidant followed by a secondary 0.25 ml anion exchange separation of Re. The Pd and Ir‐Pt were further successively purified by an Eichrom‐LN column to completely remove Zr and Hf, respectively. Rhenium, Ir, Ru, Pt and Pd were individually measured by multi‐collector inductively coupled plasma‐mass spectrometry (MC‐ICP‐MS), except for Ru after microdistillation purification was analysed by negative‐thermal ionisation mass spectrometry (N‐TIMS). The analytical results for peridotite reference material WPR‐1 agree well with the previously published data. Finally, several mafic rock reference materials including TDB‐1, WGB‐1, BHVO‐2, BCR‐2, BIR‐1a and DNC‐1a were analysed for Re‐Os isotopes and platinum‐group element concentrations to test their suitability for certification.  相似文献   

7.
Re–Os dating of disseminated ore from the Kalatongke Cu–Ni sulfide mineral deposit, Xinjiang, Northwest (NW) China, yields an apparent isochron age of 433 ± 31 Ma with an apparent initial 187Os/188Os (433 Ma) ratio of 0.197 ± 0.027. This apparent age is older than not only the zircon U–Pb age of the host intrusion (287 ± 5 Ma, Han et al., 2004) but also the stratigraphic age of the intruded country rock. Thus, the regression line is a pseudo-isochron. However, previous Re–Os dating of massive ores of the same deposit yielded an age that is consistent, within analytical uncertainty, with the zircon U–Pb age (Zhang et al., 2008). This relationship is similar to that observed in the Jinchuan deposit, NW China. Therefore, we suggested that the same mechanism, post-segregation diffusion of Os (Yang et al., 2008), is applicable to the Kalatongke deposit.Re–Os isotopic studies of Kalatongke, Jinchuan and representative magmatic Cu–Ni sulfide deposits suggest that the massive ores of mafic–ultramafic-rock-associated Cu–Ni sulfide deposits would yield geologically meaningful Re–Os age, whereas a pseudo-isochron would be obtained for the disseminated ores. Therefore, to obtain a geologically meaningful Re–Os age, the type of the deposit, the type of the ore and the ore-forming process should be taken into account.  相似文献   

8.
Xihuashan tungsten deposit is one of the earliest explored tungsten deposits in southeastern China. It is a vein type deposit genetically associated with the Xihuashan granite pluton. Here we report new dating and zircon geochemistry results. Re–Os isotopic dating for molybdenite intergrowth with wolframite in the oldest generation of the Xihuashan pluton yielded an isochron age of 157.0 ± 2.5 Ma (2σ). Zircon U–Pb laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) dating shows that the pluton crystallized at 155.7 ± 2.2 Ma (2σ). This age is similar to the molybdenite Re–Os age for the ore deposit within error. This, together with published data, suggests that the major W(Mo)‐Sn mineralization occurred between 160–150 Ma in southeastern China. These deposits constitute a major part of the magmatic‐metallogenic belt of eastern Nanlin. The lower Re content in molybdenite of the Xihuashan tungsten deposit shows crustal origin for the ore‐forming material. The limited direct contributions from the subducting slab for the tungsten mineralization in the Nanling region suggest a change of the style of the paleo‐Pacific plate beneath southeastern China.  相似文献   

9.
The Karamay porphyry Mo–Cu deposit, discovered in 2010, is located in the West Junggar region of Xinjiang of northwest China. The deposit is hosted within the Karamay granodiorite porphyry that intruded into Early Carboniferous sedimentary strata and its exo‐contact zone. The LA‐ICPMS U–Pb method was used to date the zircons from the granodiorite samples of the porphyry. Analyses of 12 spots of zircons from the granodiorite samples yield a U–Pb weighted mean age of 300.8 ± 2.1 Ma (2σ). Re–Os dating for five molybdenite samples obtained from two prospecting trenches and three outcrops in the deposit yield a Re–Os isochron age of 294.6 ± 4.6 Ma (2σ), with an initial 187Os/188Os of 0.0 ± 1.1. The isochron age is within the error of the Re–Os model ages, demonstrating that the age result is reliable. The Re–Os isochron age of the molybdenite is consistent with the U–Pb age of the granodiorite porphyry, which indicates that the deposit is genetically related with an Early Permian porphyry system. The ages of the Karamay Mo–Cu deposit and the ore‐bearing porphyry are similar to the ages of intermediate‐acid intrusions and Cu–Mo–Au polymetallic deposits in the West Junggar region. This consistency suggests the same geodynamic process to the magmatism and related mineralization.  相似文献   

10.
The Huaheitan molybdenum deposit in the Beishan area of northwest China consists of quartz‐sulfide veins. Orebodies occur in the contact zone of the Huaniushan granite. LA‐ICPMS U–Pb zircon dating constrains the crystallization of the granite at 225.6 ± 2.2 Ma (2σ, MSWD = 4.5). Re–Os dating of five molybdenite samples yield model ages ranging from 223.2 ± 3.5 Ma to 228.6 ± 3.4 Ma, with an average of 225.2 ± 2.4 Ma. The U–Pb and Re–Os ages are identical within the error, suggesting that the granite and related Huaheitan molybdenum deposit formed in the Late Triassic. Our new data, combined with published geochronological results from the other molybdenum deposits in this region, imply that intensive magmatism and Mo mineralization occurred during 240 Ma to 220 Ma throughout the Beishan area.  相似文献   

11.
报道了用多接收器电感耦合等离子体质谱仪(MC-ICPMS)测定Re-Os同位素组成的质谱方法和化学分离方法,并应用该方法测定了天然镁铁-超镁铁质岩石样品中的Os同位素组成及Re、Os含量.Re同位素组成的MC-ICPMS测定利用膜除溶雾化器(Aridus)和静态法拉第杯接收的方式完成,采用Ir标准溶液在线校正仪器的质量分馏.Os同位素组成的MC-ICPMS测定采用常规雾化器和离子计数器静态接收的方式完成,并用10%的HCl-EtOH和10%的HCl溶液交替清洗进样系统来消除Os的"记忆效应".岩石样品的Re和Os化学分离采用Carius管溶样法,结合CCl4萃取以及微蒸馏的方法分离纯化Os,利用阴离子交换树脂的方法分离纯化Re.运用上述方法,对6个镁铁-超镁铁质岩石样品中的Re、Os含量和187Os/188Os同位素比值进行了测定,获得了理想的分析结果.  相似文献   

12.
Mesozoic ore deposits in Zhejiang Province, Southeast China, are divided into the northwestern and southeastern Zhejiang metallogenic belts along the Jiangshan–Shaoxing Fault. The metal ore deposits found in these belts are epithermal Au–Ag deposits, hydrothermal‐vein Ag–Pb–Zn deposits, porphyry–skarn Mo (Fe) deposits, and vein‐type Mo deposits. There is a close spatial–temporal relationship between the Mesozoic ore deposits and Mesozoic volcanic–intrusive complexes. Zircon U–Pb dating of the ore‐related intrusive rocks and molybdenite Re–Os dating from two typical deposits (Tongcun Mo deposit and Zhilingtou Au–Ag deposit) in the two metallogenic belts show the early and late Yanshanian ages for mineralization. SIMS U–Pb data of zircons from the Tongcun Mo deposit and Zhilingtou Au–Ag deposit indicate that the host granitoids crystallized at 169.7 ± 9.7 Ma (2σ) and 113.6 ± 1 Ma (2σ), respectively. Re–Os analysis of six molybdenite samples from the Tongcun Mo deposit yields an isochron age of 163.9 ± 1.9 Ma (2σ). Re–Os analyses of five molybdenite samples from the porphyry Mo orebodies of the Zhilingtou Au‐Ag deposit yield an isochron age of 110.1 ± 1.8 Ma (2σ). Our results suggest that the metal mineralization in the Zhejiang Province, southeast China formed during at least two stages, i.e., Middle Jurassic and Early Cretaceous, coeval with the granitic magmatism.  相似文献   

13.
The Eastern Tianshan Orogenic Belt of the Central Asian Orogenic Belt and the Beishan terrane of the Tarim Block, NW China, host numerous Fe deposits. The Cihai Fe deposit (>90 Mt at 45.6 % Fe) in the Beishan terrane is diabase-hosted and consists of the Cihai, Cinan, and Cixi ore clusters. Ore minerals are dominantly magnetite, pyrite, and pyrrhotite, with minor chalcopyrite, galena, and sphalerite. Gangue minerals include pyroxene, garnet, hornblende and minor plagioclase, biotite, chlorite, epidotite, quartz, and calcite. Pyrite from the Cihai and Cixi ore clusters has similar Re–Os isotope compositions, with ~14 to 62 ppb Re and ≤10?ppt common Os. Pyrrhotite has ~5 to 39 ppb Re and ~0.6 ppb common Os. Pyrite has a mean Re–Os model age of 262.3?±?5.6 Ma (n?=?13), in agreement with the isochron regression of 187Os vs. 187Re. The Re–Os age (~262 Ma) for the Cihai Fe deposit is within uncertainty in agreement with a previously reported Rb–Sr age (268?±?25 Ma) of the hosting diabase, indicating a genetic relationship between magmatism and mineralization. Magnetite from the Cihai deposit has Mg, Al, Ti, V, Cr, Co, Ni, Mn, Zn, Ga, and Sn more elevated than that of typical skarn deposits, but both V and Ti contents lower than that of magmatic Fe–Ti–V deposits. Magnetite from these two ore clusters at Cihai has slightly different trace element concentrations. Magnetite from the Cihai ore cluster has relatively constant trace element compositions. Some magnetite grains from the Cixi ore cluster have higher V, Ti, and Cr than those from the Cihai ore cluster. The compositional variations of magnetite between the ore clusters are possibly due to different formation temperatures. Combined with regional tectonic evolution of the Beishan terrane, the Re–Os age of pyrite and the composition of magnetite indicate that the Cihai Fe deposit may have derived from magmatic–hydrothermal fluids related to mafic magmatism, probably in an extensional rift environment.  相似文献   

14.
《International Geology Review》2012,54(14):1825-1842
The Longmala and Mengya’a deposits are two representative skarn Pb–Zn deposits of the Nyainqêntanglha Pb–Zn–(Cu–Mo–Ag) polymetallic belt in the Gangdese region, Tibet, China. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the mineralization-related biotite monzogranite from the Longmala deposit yielded a weighted mean age of 55.7 Ma, which can be interpreted as the emplacement age of the pluton. Re–Os dating of three molybdenite samples from the Longmala deposit yielded model ages of 51.8–54.3 Ma, with a weighted mean age of 53.3 Ma, which is interpreted as the mineralization age of the deposit and overlaps the age of the causative intrusion. The Re–Os dating of four molybdenite samples from the Mengya’a deposit yielded model ages of 60.4–65.8 Ma, with a weighted mean age of 63.6 Ma, which represents the mineralization age of this deposit. Our new precise age data for these two deposits are consistent with the existing ages of ca. 65–51 Ma for other skarn polymetallic deposits in the Nyainqêntanglha metallogenic belt. In addition, these new age data, combined with existing information on the geological evolution history of the Lhasa terrane, indicate that the belt of skarn deposits is closely related to initial collision between India and the Asian continents.  相似文献   

15.
《International Geology Review》2012,54(14):1783-1791
The Chibaisong magmatic Cu–Ni sulphide deposit is located in Tonghua City, Jilin Province, in the eastern part of the northern margin of the North China Craton. The geological characteristics of the deposit have been investigated, and pyrrhotite Re–Os isotope dating has been utilized to constrain the age. Five pyrrhotite samples separated from the Chibaisong Cu–Ni sulphide deposit yielded a Re–Os isotopic isochron age of 2237 ± 62 Ma (mean squared weighted deviation = 1.13, n = 5), indicating that the only Palaeoproterozoic magmatic Cu–Ni sulphide deposit in China is the Chibaisong Cu–Ni sulphide deposit. The geodynamic setting during ore formation was related to the Liaoning–Jilin Palaeoproterozoic rift split. The Re–Os isotope analyses showed an initial 187Os/188Os ratio of 0.778 ± 0.033, and (187Os/188Os)i and γOs(t) values ranged from 0.7531 to 0.8013 (average 0.7734) and from 574 to 617 (average 592), respectively, indicating that abundant crustal material (5–10%) was mixed with the Cu–Ni sulphide ore system during magma ascent and ore formation.  相似文献   

16.
《International Geology Review》2012,54(13):1616-1625
We report new zircon U–Pb and pyrite Re–Os geochronological studies of the Yinjiagou poly-metallic deposit, sited along the southern margin of the North China Craton (SMNCC). In this deposit, pyrite, the most important economic mineral, is intergrown/associated with Mo, Cu, Au, Pb, Zn, and Ag. Prior to our new work, the age of chalcopyrite–pyrite mineralization was known only from its spatial relationship with molybdenite mineralization and with intrusions of known ages. The U–Pb and Re–Os isotope systems provide an excellent means of dating the mineralization itself and additionally place constraints on the ore genesis and metal source. Zircons separated from the quartz–chalcopyrite–pyrite veins include both detrital and magmatic groups. The magmatic zircons confine the maximum age of chalcopyrite–pyrite mineralization to 142.0 ± 1.5 Ma. The Re–Os results yield an age of 141.1 ± 1.1 Ma, which represents the age of the chalcopyrite–pyrite mineralization quite well. The common Os contents are notably low (0.5–20.1 ppt) in all samples. In contrast, the Re contents vary considerably (3.0–199.2 ppb), most likely depending on intensive boiling, which resulted in an increase of Re within the pyrite. This study demonstrates that the main chalcopyrite–pyrite mineralization occurred late in the magmatic history and was linked to a deeper intrusion involving dominant mantle-derived materials. This mineralization event might be related to the Early Cretaceous lithospheric destruction and thinning of the SMNCC.  相似文献   

17.
The Erlihe Pb–Zn deposit is an important mine of the Pb–Zn metallogenic zone in the South Qinling Orogen. It has been considered a sedimentary exhalative deposit in previous investigations because the ore body occurs concordantly at the transitional location of an upright fold. Re and Os isotopic analyses for paragenetic pyrites with sphalerite and galena from the ore body have been used to determine the timing of mineralization and to trace the source of metallogenic materials. The Re–Os isotopic data of four pyrite samples construct an isochron, yielding a weighted average age of 226±17 Ma (mean square weighted deviation=1.7), which is considered the main mineralization age. A dioritic porphyrite vein sample, showing weaker mineralization, was also dated using the SHRIMP zircon U–Pb isotopic method to constrain the youngest metallogenic age of the ore deposit, because it distributes along a group of tensional joints cutting not only the upright fold in the deposit field, but also the main ore bodies. The dioritic porphyrite sample yields a weighted mean 206Pb/238U age of 221±3 Ma, which is slightly younger than the Re–Os isotopic isochron age of the pyrites, considered as the upper age limit of the mineralization, namely the ending age of the mineralization. The Os isotopic compositions of sulfide minerals distribute within a range between Os isotopic compositions of the crust and the mantle, indicating that the ore deposit can be derived from magma-related fluid, and the metallogenic materials are most likely derived from the mixing source of the crust and the mantle. The Erlihe Pb–Zn deposit and associated dioritic porphyrite vein, important records of Qinling tectonic–magmatism–mineralization activities, were formed during the Triassic collisional orogeny processes.  相似文献   

18.
铼—锇同位素分析中试样化学预处理方法进展   总被引:4,自引:0,他引:4  
评述了用于Re-Os同位素体系分析的化学前处理技术的发展。简要介绍了卡洛斯管熔样法、Os的CCl4提取、溴提取和微蒸馏方法。卡洛斯管封闭熔样方法,有效地防止了Os的挥发损失和保证了Os同位素平衡,是一种很有发展前景的熔样方法。蒸馏法仍是分离和纯化Os的有效方法,溶剂(CCl4)提取和溴提取法在许多实验室里应用,而微蒸馏则是Os的二次纯化的主要方法。Re的化学分离和纯化仍是离子交换和萃取法。引用主要文献29篇。  相似文献   

19.
Two Re-Os dating reference material molybdenites were prepared. Molybdenite JDC and molybdenite HLP are from a carbonate vein-type molybdenum-(lead)-uranium deposit in the Jinduicheng-Huanglongpu area of Shaanxi province, China. The samples proved to be homogeneous, based on the coefficient of variation of analytical results and an analysis of variance test. The sampling weight was 0.1 g for JDC and 0.025 g for HLP. An isotope dilution method was used for the determination of Re and Os. Sample decomposition and pre-concentration of Re and Os prior to measurement were accomplished using a variety of methods: acid digestion, alkali fusion, ion exchange and solvent extraction. Negative thermal ionisation mass spectrometry and inductively coupled plasma-mass spectrometry were used for the determination of Re and 187Os concentration and isotope ratios. The certified values include the contents of Re and Os and the model ages. For HLP, the Re content was 283.8 ± 6.2 μg g−1, 187Os was 659 ± 14 ng g−1 and the Re-Os model age was 221.4 ± 5.6 Ma. For JDC, the Re content was 17.39 ± 0.32 μg g−1, 187Os was 25.46 ± 0.60 ng g−1 and the Re-Os model age was 139.6 ± 3.8 Ma. Uncertainties for both certified reference materials are stated at the 95% level of confidence. Three laboratories (from three countries: PR. China, USA, Sweden) joined in the certification programme. These certified reference materials are primarily useful for Re-Os dating of molybdenite, sulfides, black shale, etc.  相似文献   

20.
Re-Os同位素定年方法进展及ICP-MS精确定年测试关键技术   总被引:8,自引:0,他引:8  
本文介绍了Re-Os同位素定年的基本原理、技术发展及应用现状;综述了样品分解和Re-Os分离富集的主要方法,重点对ICP-MS法进行Re-Os同位素定年做了较详尽的介绍,包括质量分馏校正、干扰校正、含量初测、取样量的确定、稀释剂的稀释比及稀释剂加入量等,以确保高精度测试;评述了ICP-MS最常见的测定对象-辉钼矿中Re-Os的失耦现象及降低其对Re-Os同位素定年影响的对策,文中描述了由测定同位素比值计算含量时的误差传递公式并重申了最佳稀释比。最后,指出了Re-Os同位素定年方法研究中应该关注的工作方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号