首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An integrated petrographic and geochemical study of the sandstones of the Maastrichtian-aged in the Orhaniye (Kazan-Ankara-Turkey) was carried out to obtain more information on their provenance, sedimentological history and tectonic setting. Depending on their matrix and mineralogical content, the Maastrichtian sandstones are identified as lithic arenite/wacke. The Dikmendede sandstones derived from types of provenances, the recycled orogen and recycled transitional. The chemical characteristics of the Dikmendede sandstones, i.e., fairly uniform compositions, high Th/U ratios (>3.0), negative Eu anomalies (Eu/Eu* 0.72–0.99) and Th/Sc ratios (mostly less than 1.0), favor the OUC (old upper continental crust) provenance for the Dikmendede sandstones. The SiO2/Al2O3, Th/Sc (mostly <1.0) and La/Sc (<4.0) ratios are; however, slightly lower than typical OUC, and these ratios may suggest a minor contribution of young arc-derived material. The rare earth element (REE) pattern, and La/Sc versus Th/Co plot suggests that these sediments were mainly derived from felsic source rocks. The Dikmendede sandstones have high Cr (123–294 ppm) and Ni (52–212 ppm) concentrations, Cr/Ni ratio of 1.93, and a medium correlation coefficient between Cr and Ni and corresponding medium to high correlation of both (Cr and Ni, respectively) elements with Co. These relationships indicate a significant contribution of detritus from ophiolitic rocks. As rare earth element data are available for the Dikmendede sandstones, the Eu/Eu* is compared with LaN/YbN. Samples plot in the area of overlapping between continental collision, strike-slip and continental arc basins. The predominantly felsic composition of the Dikmendede sandstones is supported by the REE plots, which show enriched light REE, negative Eu anomaly and flat or uniform heavy REE. The Dikmendede sandstones have compositions similar to those of the average upper continental crust and post-Archean Australian shales. This feature indicates that the sediments were derived mainly from the upper continental crust. The Dikmendede sandstones have chemical index of alteration (CIA) values of 28–49, with an average of 40 indicating a low degree of chemical weathering in the source area. The compositional immaturity of the analyzed sandstone samples is typical of subduction-related environments, and their SiO2/Al2O3 and K2O/Na2O ratios and Co, Sc, Th and Zr contents reflect their oceanic and continental-arc settings. The Dikmendede sandstones were developed as flysch deposits derived from mixed provenance in a collision belt.  相似文献   

2.
The provenance and tectonic setting of sandstones from the Bombouaka Group of the Voltaian Supergroup, in the northeastern part of Ghana, have been constrained from their petrography and whole-rock geochemistry. Modal analysis carried out by point-counting sandstone samples indicates that they are quartz arenites. The index of compositional variability values and SiO2/Al2O3, Zr/Sc, and Th/Sc values indicates that the sediments are mature. The sandstones are depleted in CaO and Na2O. They are, however, enriched in K2O, Ba, and Rb relative to average Neoproterozoic upper crust. These characteristics reflect intense chemical weathering in the source region as proven by high weathering indices (i.e., CIA, PIA, and CIW). In comparison with average Neoproterozoic upper crust, the sandstones show depletion by transition metals and enrichment by high field strength elements. They generally show chondrite-normalized fractionated light rare-earth element (LREE) patterns (average LaN/SmN = 4.40), negative Eu anomalies (average Eu/Eu* = 0.61), and generally flat heavy rare-earth elements (HREE) (average GdN/YbN = 1.13). The sandstones have La/Sc, Th/Sc, La/Co, Th/Co, Th/Cr, and Eu/Eu* ratios similar to those of sandstones derived from felsic source. Mixing calculations using the rare-earth elements (REE) suggests 48% tonalite–trondhjemite–granodiorite and 52% granite as possible proportions for the source of the sandstones. Both the petrographic and whole-rock geochemical data point to a passive margin setting for the sandstones from the Bombouaka Group.  相似文献   

3.
The petrography and geochemistry (major, trace, and rare earth elements) of clastic sedimentary rocks from the Paleogene Dainan Formation (E2 d) in the North Jiangsu Basin, eastern China, are investigated to trace their provenance and to constrain their tectonic setting. The studied samples are characterized by LREE enrichment, flat HREE, and negative Eu anomaly similar to the upper continental crust composed chiefly of felsic components in the source area. Petrographic observation indicates that the sandstones contain predominant metamorphic and sedimentary clasts that were derived from peripheral recycled orogen and intrabasinal materials. The trace element ratios (Co/Th, La/Sc, La/Th, and Th/U) and the La-Th-Sc ternary plot further confirm that the sandstones are derived from granitic gneiss sources from recycled orogen and the intrabasinal mixed sedimentary provenance. The granitic gneiss source rocks may have derived from the Proterozoic granitic gneiss denuded in the eastern Dabie-Sulu orogen; and the intrabasinal provenance may come from the underlying strata during the Late Paleocene Wubao movement. The chemical index of alteration (CIA) and A-CN-K plot show that these source rocks may have experienced weak to medium chemical weathering. Analysis on tectonic setting of the source area suggests an active continental margin, which is intimate with tectonic feature of the Dabie-sulu orogen and the Yangtze block. In summary, we suggest that the North Jiangsu Basin is an ideal site for the study of the coupling between the uplift of the orogen and the subsidence of the foreland basin.  相似文献   

4.
The Trichinopoly Group (later redesignated as Garudamangalam) has unconformable relationship with underlying Uttatur Group and is divided into lower Kulakanattam Formation and upper Anaipadi Formation. These calcareous sandstones are analysed major, trace and rare earth elements (REEs) to find out CIA, CIW, provenance and tectonic setting. The silica content of fossiliferous calcareous sandstone show wide variation ranging from 12.93 to 42.56%. Alumina content ranged from 3.49 to 8.47%. Higher values of Fe2O3 (2.29–22.02%) and low MgO content (0.75–2.44%) are observed in the Garudamangalam Formation. CaO (23.53–45.90) is high in these sandstones due to the presence of calcite as cementing material. Major element geochemistry of clastic rocks (Al2O3 vs. Na2O) plot and trace elemental ratio (Th/U) reveal the moderate to intense weathering of the source rocks. The Cr/Zr ratio of clastic rocks reveal with an average of 1.74 suggesting of felsic provenance. In clastic rocks, high ratios of \(\sum \)LREE/\(\sum \)HREE, La/Sc, Th/Sc, Th/Co, La/Co and low ratios of Cr/Zr, and positive Eu anomaly ranges from (Eu/Eu* = 1.87–5.30) reveal felsic nature of the source rocks.  相似文献   

5.
Subaerial weathering level, source area and tectonic environments were interpreted by using petrographic and geochemical characteristics of Eocene age sandstones found in the eastern Pontides. The thickness of Eocene age clastic rocks in the eastern Pontides ranges from 195 to 400 m. Mineralogical components of sandstones were mainly quartz, feldspar, rock fragments, and opaque and accessory minerals. Depending on their matrix and mineralogical content, Eocene age sandstones are identified as arkosic arenite-lithic arenite and feldspathic wacke-lithic wacke. CIA (Chemical Index of Alteration) values observed in the Eocene age sandstones (43–55) suggest that the source terrain of the sandstones was not affected by intense chemical weathering. Low CIW/CIA (Chemical Index of Weathering/Chemical Index of Alteration) values of the sandstones studied here suggest only slightly decomposed material and having undergone little transport until final deposition. Zr/Hf, Th/Sc, La/Sc and CIA ratios are low and demonstrate a mafic source; on the other hand, high LREE/HREE ratios and a slightly negative Eu anomaly indicate a subordinate fclsic source. Modal mineralogical and SiO2/Al2O3 and K2O/Na2O and Th, Zr, Co, Sc of Eocene age sandstone contents indicate that they are probably magmatic arc originated and deposited in the back arc basin.  相似文献   

6.
Petrography and geochemistry (major, trace and rare earth elements) of clastic rocks from the Lower Cambrian Lalun Formation, in the Posht-e-badam block, Central Iran, have been investigated to understand their provenance. Petrographical analysis suggests that the Lalun conglomerates are dominantly with chert clasts derived from a proximal source, probably chert bearing Precambrian Formations. Similarly, purple sandstones are classified as litharenite (chertarenite) and white sandstones as quartzarenite types. The detrital modes of purple and white sandstones indicate that they were derived from recycled orogen (uplifted shoulders of rift) and stable cratonic source. Most major and trace element contents of purple sandstones are generally similar to upper continental crust (UCC) values. However, white sandstones are depleted in major and trace elements (except SiO2, Zr and Co) relative to UCC, which is mainly due to the presence of quartz and absence of other Al-bearing minerals. Shale samples have considerably lower content in most of the major and trace elements concentration than purple sandstones, which is possibly due to intense weathering and recycling. Modal composition (e.g., quartz, feldspar, lithic fragments) and geochemical indices (Th/Sc, La/Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) of sandstones, and shales (La/Sc and La/Cr ratios) indicate that they were derived from felsic source rocks and deposited in a passive continental margin. The chondrite-normalized rare earth element (REE) patterns of the studied samples are characterized by LREE enrichment, negative Eu anomaly and flat HREE similar to an old upper continental crust composed chiefly of felsic components in the source area. The study of paleoweathering conditions based on modal composition, chemical index of alteration (CIA), plagioclase index of alteration (PIA) and A–CN–K (Al2O3 − CaO + Na2O − K2O) relationships indicate that probably chemical weathering in the source area and recycling processes have been more important in shale and white sandstones relative to purple sandstones. The results of this study suggest that the main source for the Lalun Formation was likely located in uplifted shoulders of a rifted basin (probably a pull-apart basin) in its post-rift stage (Pan-African basement of the Posht-e-badam block).  相似文献   

7.
The Bengal Basin originated during the collision of India with Eurasia and Burma. The provenance analysis of the Chittagong Tripura Fold Belt (CTFB), which is the folded eastern flank of the Bengal Basin as well as the Neogene belt of the Indo-Burman Ranges (IBR) is key to better understand the possible sources of sediment input from the complex interplay of the Indian, Eurasian and Burma plates. We report new whole rock geochemical and detrital zircon U–Pb data from the upper Neogene sandstones of Tipam-Dupi Tila formations (Pliocene to Plio-Plestocene succession) from the CTFB. Detrital zircon U–Pb age spectra show three predominant peaks at <200 Ma, 480–650, ∼800–1000 Ma. The geochemical discriminations and elemental ratios of Eu/Eu* (∼0.70), La/Sc (∼16.13), La/Co (∼15.76), Th/Sc (∼2.95), La/Th (∼5.67), Th/Co (∼2.87), Cr/Th (∼4.63) as well as Chondrite-normalized REE patterns with flat HREE, LREE enrichment, and negative Eu anomalies for the Tipam and Dupi Tila formations are suggestive of a dominantly felsic source area experiencing moderate to intensive chemical weathering (Chemical index of alteration, CIA - 57 to 81) and have a recycled provenance orogen related to active continental or passive margin settings. Integrated geochemical and zircon U–Pb studies reveal that the main sediment input might have been from the Himalayan orogen with significant arc-derived detritus, possibly from the Gangdese arc as well as from the Burma magmatic arc.  相似文献   

8.
Petrographical and geochemical studies of Silurian Niur sandstones, Derenjal Mountains, Central Iran, were carried out to infer their provenance and tectonic setting. Modal analysis data of 37 medium sand size and well-sorted samples revealed that most quartz is composed of monocrystalline grains with straight to slightly undulos extinction and about 3 % polycrystalline quartz has inclusions, such as rutile needles. The sandstones are classified as quartzarenite, sublitharenite, and subarkose types based on framework composition and geochemistry. Petrographic studies reveal that these sandstones contain quartz, feldspars, and fragments of sedimentary rocks. The detrital modes of these sandstones indicate that they were derived from recycled orogen and stable cratonic source. Major and trace element contents of them are generally depleted (except SiO2) relative to upper continental crust which is mainly due to the presence of quartz and absence of Al-bearing minerals. Modal composition (e.g., quartz, feldspar, and lithic fragments) and discrimination diagrams based on major elements, trace elements (Ti, La, Th, Sc, and Zr), and also such ratios as La/Sc, Th/Sc, La/Co, and Th/Co, in sandstones suggest a felsic igneous source rock and quartzose polycyclic sedimentary provenance in a passive continental margin setting. Furthermore, high Zr/Sc values in these sandstones are considered as a sign of recycling. We indicated paleo-weathering conditions by modal compositions, the CIA index and Al2O3?+?K2O?+?Na2O% vs. SiO2% bivariate for these sandstones. Based on these results, although recycling is important to increase the maturity of the Niur sandstones, humid climate conditions in the source area have played a decisive role.  相似文献   

9.
Sandstones of Jhuran Formation from Jara dome, western Kachchh, Gujarat, India were studied for major, trace and rare earth element (REE) geochemistry to deduce their paleo-weathering, tectonic setting, source rock characteristics and provenance. Petrographic analysis shows that sandstones are having quartz grains with minor amount of K-feldspar and lithic fragments in the modal ratio of Q 89:F 7:L 4. On the basis of geochemical results, sandstones are classified into arkose, sub-litharenite, wacke and quartz arenite. The corrected CIA values indicate that the weathering at source region was moderate to intense. The distribution of major and REE elements in the samples normalized to upper continental crust (UCC) and chondrite values indicate similar pattern of UCC. The tectonic discrimination diagram based on the elemental concentrations and elemental ratios of Fe2O3 + MgOvs. TiO2, SiO2 vs. log(K2O/Na2O), Sc/Cr vs. La/Y, Th–Sc–Zr/10, La–Th–Sc plots Jhuran Formation samples in continental rift and collision settings. The plots of Ni against TiO2, La/Sc vs. Th/Co and V–Ni–Th ?10 reveals that the sediments of Jhuran Formation were derived from felsic rock sources. Additionally, the diagram of (Gd/Yb) N against Eu/Eu ? suggest the post-Archean provenance as source possibly Nagar Parkar complex for the studied samples.  相似文献   

10.
为探讨下扬子地区下寒武统幕府山组底部富有机质黑色岩系的物源属性及源区构造背景特征,在南京幕府山剖面幕府山组底部系统的采集样品,并对其进行地球化学测试与分析。Th/Sc?Zr/Sc图解表明幕府山组黑色岩系未曾经历沉积再循环;通过分析主量元素比值特征、稀土元素(REE)配分模式、δEu、(La/Yb)N及La/Th?Hf和La/Yb?∑REE判别图解,认为幕府山组黑色岩系源岩主要是花岗岩和富含长英质矿物的沉积岩等上地壳长英质岩石,存在基性岩的混入。从物源属性、地质年代关系、华南大陆构造演化历程等多方面考虑,源岩中花岗岩成分主要为新元古时期岩浆活动形成的岩浆岩,物源区为江南古陆(江南造山带)。通过分析K2O+Na2O?SiO2、K2O/Na2O?SiO2/Al2O3、La?Th?Sc、Th?Co?Zr/10和Th?Sc?Zr/10图解,认为幕府山组黑色岩系源区构造背景为被动大陆边缘。  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987113000352   总被引:1,自引:0,他引:1  
The Yidun Group extends from the Shangri-La region to the south and the Changtai region to the north,and is an important component of the Triassic Yidun arc in the eastern Tibetan plateau.It is composed of the Lieyi,Qugasi,Tumugou and Lanashan Formations from the base upward.Both the Lieyi and Lanashan Formations consist dominantly of black or gray slate and sandstone,whereas the Qugasi and Tumugou Formations have variable amounts of mafic to felsic volcanic rocks and turfs accompanied with gray slate and sandstone.Sandstone from the Yidun Group has variable CIA values from 55 to 76,indicative of mild to moderate weathering condition for the source rocks.All the sandstones define a general weathering trend nearly parallel to the A-CN boundary in the A-CN-K triangular diagram,implying limited effect of diagenetic and post-depositional K-metasomatism.Dominant detrital quartz and feldspar grains of the sandstones suggest predominantly felsic sources.Relatively high Y/Ni and low Cr/V ratios of sandstones from the Yidun Group indicate more contribution from felsic than mafic sources.Similarly,the Yidun sandstones have Co/Th and La/Sc ratios generally similar to upper continental crust (UCC) and cluster between UCC and felsic sources,indicating felsic rocks as primary sources.Granodiorite represents the average chemical composition of sources as evaluated by extending the predicted weathering trend back to the feldspar join in A-CN-K diagram.Prominently high Zr/Sc ratio or Hf concentration and Paleoproterozoic Nd modal ages (1.94-2.21 Ga)point to input of recycling components derived from old sedimentary source in a relatively stable tectonic setting.  相似文献   

12.
13.
The major, trace and rare earth element (REE) contents of metapelite (MPL), metapsammite (MPS) and metamarl (MM) samples from the Cambro-Ordovician Seydi?ehir Formation were analyzed to investigate their provenance and tectonic setting. The MPS, MPL, and MM samples have variable SiO2 concentrations, with average values of 72.36, 55.54, and 20.95 wt%, moderate SiO2/Al2O3 ratios (means of 6.88, 3.23, and 3.80), moderate to high Fe2O3 + MgO contents (means of 5.14, 9.55, 3.56 wt%), and high K2O/Na2O ratios (means of 3.26, 3.64, 2.90), respectively. On average, the chemical index of alteration (CIA) values of the MPS and the MPL are 65.87 and 71.96, respectively, while the chemical index of weathering (CIW) values are 74.54 and 85.09, respectively. These data record an intermediate to high degree of alteration (weathering) of plagioclase to illite/kaolinite in the samples’ provenance. The chondrite-normalized REE patterns of all the sample groups are similar and are characterized by subparallel light rare earth elements (LREE)-enriched, relatively flat heavy rare earth elements (HREE) patterns with pronounced Eu anomalies (mean of 0.69) and moderate fractionation [average (La/Yb)N = 8.7]. Plots of sediments in ternary diagrams of La, Th, Sc and elemental ratios (La/Sc, Th/Sc, Cr/Th, Eu/Eu*, La/Lu, Co/Th, La/Sc and Sc/Th), which are critical for determining provenance, and REE patterns indicate that the metaclastic units of the Seydi?ehir Formation were derived dominantly from felsic to intermediate magmatic rocks and not from a mafic source. The La–Sc–Th and Th–Sc–Zr/10 ternary diagrams of the Seydi?ehir Formation are typical of continental island arc/active continental margin tectonic settings. The geologic location and geochemistry of the Seydi?ehir Formation suggest that it was deposited in an Andean-type retroarc foreland basin during the Late Cambrian–Early Ordovician period. The Neoproterozoic intermediate to felsic magmatic rocks and metaclastic sediments with felsic origins of the Sand?kl?–Afyon Basement Complex (SBC) and their equivalent units, which are thought to be overlain by the younger units in the study area, may be the dominant source rocks for the Seydi?ehir Formation.  相似文献   

14.
南羌塘盆地江鱼玛洛地区发育中侏罗统雀莫错组,通过岩石地球化学分析,对砂岩源区环境进行恢复. 化学风化作用指标(CIW)、化学蚀变作用指标(CIA)和A-CN-K图解反映砂岩的碎屑成分遭受过较强烈的风化. 化学组分指标(ICV)和Th/Sc-Zr/Sc图解指示主要为第一沉积旋回产物,伴有少量沉积再循环物质. 岩石元素Al2O3/TiO2、Th/Sc、Cr/Zr比值和La/Th-Hf源岩判别图解反映砂岩的碎屑主要来源于上地壳长英质源区,并混入少量基性铁镁质岩石. 砂岩的微量元素特征及SiO2-K2O/Na2O、La-Th-Sc、Co-Th-Zr/10、Sc-Th-Zr/10判别图解均表明该砂岩形成于大陆边缘裂陷构造背景.  相似文献   

15.
沉积岩中的主微量元素和稀土元素特征可以指示其物源、构造背景和沉积环境等.康托组地层沉积时代为古近纪,是青藏高原早期隆升后首先沉积的陆相碎屑岩,对该地层的物源信息及构造背景分析对于研究羌塘盆地新生代演化和高原隆升过程具有积极意义.本文对羌塘盆地半岛湖地区康托组地层进行了地层学、岩石学、元素地球化学和黏土含量分析,研究了其...  相似文献   

16.
敦煌造山带南部红柳峡混杂带基质的研究,为认识敦煌造山带的形成和演化提供了新的依据。本文从沉积学、地球化学和年代学等方面系统讨论了该混杂带基质的特征和形成环境。结果显示,基质的岩石类型主要包括变泥质岩(云母石英片岩)和变质砂岩,普遍发生强烈变形。局部弱变形变质的基质仍保留有原生沉积构造(如T_(ab)、T_(de)、T_(bde)组合的鲍马序列),反映原岩是一套浊积岩复理石。显微岩相学特征显示,基质碎屑组分以长石、石英和岩屑为主,长石和岩屑含量较高,分别为47%和27%,反映大量火成岩物质的加入,且碎屑颗粒的分选性和磨圆度较差,说明搬运距离较近。地球化学方面,低的化学蚀变指数(CIA=49~67),反映复理石基质物源区母岩经历的风化程度较低。高的成分变化指数(ICV0.8)以及Zr/Sc-Th/Sc投图结果显示,沉积物再循环程度低,为近物源区的初次沉积。基质Sc、Cr、Co、Ni含量低,Eu/Eu*、La/Sc、Th/Sc、La/Co、Th/Co和Cr/Th等元素比值类似于来自长英质源区的沉积物,暗示其物源区母岩以中-酸性岩石为主。La/Sc-Ti/Zr和Th-ScZr/10投图结果显示,复理石基质形成于陆缘弧或活动大陆边缘构造背景。弱变形浅变质砂岩的碎屑模式表明,基质的物源来自"切割型弧-过渡型弧"源区。综上,红柳峡混杂带基质在碎屑组成方面,以再循环程度低、近物源堆积的"切割型弧-过渡型弧"源区长英质碎屑组分为主,在沉积构造方面,发育鲍马序列和深水块体搬运沉积(MTD)构造,表明基质形成于陆缘弧或活动大陆边缘的俯冲带海沟环境。碎屑锆石年代学显示三组年龄:2300Ma、1850Ma和423Ma,结合区域地质背景分析,初步认为物源碎屑可能来自混杂带北侧的三危山弧和东巴兔-蘑菇台弧的古生代花岗岩类以及俯冲折返的变质基性岩岩块。复理石基质的变质砂岩中获得的最年轻的岩浆碎屑锆石年龄为389Ma,说明该砂岩形成于中泥盆世之后,暗示敦煌造山带南部红柳峡地区洋盆尚未俯冲完毕,碰撞作用尚未开始。  相似文献   

17.
In this study, the whole-rock geochemistry of 35 Oligocene–Miocene sandstone and shale samples from the Zivah Formation, Moghan area (NW Iran) were collected and analyzed for evaluation of their provenance, tectonic setting and the intensity of paleo-weathering. Low to moderate values of the chemical index of alteration (mean CIA?=?53/68 for sandstones/shales) and relatively high values of index of compositional variability (mean ICV?=?1.23/1.08 for sandstones/shales) suggest weak chemical weathering and an immature source. These results support for the semi-arid and semi-humid paleoclimate conditions in the source area. The geochemistry results reveal that the sediments were deposited in a basin related to the island arc and active continental margin tectonic settings, probably indicating the time of initial collision between Arabia and Eurasia. The enrichment of Cr, Ni and V in the sandstone and shales are consistent with mafic input from the source area. However, La/Th vs. Hf and La/Sc vs. Co/Th plots reveal mixed source of felsic and intermediate volcanic rocks. The data indicate that the sediments most likely originated from a mixture of mafic, intermediate and felsic igneous source areas, possibly as the erosional products of localized topography of the Talysh and the Lesser Caucasus mountains (south to southwest), created by compression in the Moghan region during the syn-collisional development of the Caucasus.  相似文献   

18.
早奥陶世和早志留世是北祁连加里东造山带构造演化和盆地转变的关键时期。在造山带东段景泰地区,下奥陶统阴沟组和下志留统肮脏沟组两套砂岩的微量元素和稀土元素特征显示,阴沟组杂砂岩样品(Cj1和Cj3)具有最小的Eu/Eu*及最大的Th/Sc和REE,肮脏沟组杂砂岩具有较小的Eu/Eu*和较大的Th/Sc及REE;阴沟组岩屑砂岩样品(Cj13、Cj15和Cj18)具有最大的Eu/Eu*及最小的Th/Sc、REE和La/Yb。多个物源、构造背景判别图解和多元素蛛网图分析表明,阴沟组杂砂岩样品具大陆边缘的构造背景,主要物源为大陆上地壳再旋回沉积物和长英质岩石;岩屑砂岩样品为岛弧构造背景,以中基性安山质岩石为主要物源,可能受陆源物质的微弱影响。肮脏沟组杂砂岩构造背景复杂,表现出大陆岛弧、活动陆缘和被动陆缘三种环境共存的特点,受中基性火山弧物质、长英质岩石和再旋回沉积岩的混合物源的影响。两套砂岩的元素特征表明二者可能具有相似的源区。阴沟组杂砂岩源区可能为阿拉善地块南缘海原群变沉积岩或其他相似的陆源再旋回沉积物,砂岩碎屑以来自初始火山弧物质为主,以石灰沟岛弧型中基性火山岩作为其源岩最合适。阴沟组形成于初始弧后盆地环境,是岛弧活动的直接记录。肮脏沟组可能的源岩为阿拉善地块南缘海原群变沉积岩和中高等成熟度的石灰沟岛弧型火山岩及海原群岛弧型变火山岩,沉积于弧后前陆盆地,对构造环境的反映存在滞后性。  相似文献   

19.
The mineralogical and geochemical characteristics of the Upper Triassic Baluti shale from the Northern Thrust Zone (Sararu section) and High Folded Zone (Sarki section) Kurdistan Region, Iraq, have been investigated to constrain their paleoweathering, provenance, tectonic setting, and depositional redox conditions. The clay mineral assemblages are dominated by kaolinite, illite, mixed layers illite/smectite at Sararu section, and illite > smectite with traces of kaolinite at Sarki. Illite, to be noted, is within the zone of diagenesis. The non-clay minerals are dominated by calcite with minor amounts of quartz and muscovite in Sararu shale; and are dominated by dolomite with amounts of calcite and quartz in Sarki shale. Baluti shale is classified as Al-rich based on major and minor elements. The chemical index of alteration (CIA) is significantly higher in the Sararu than the Sarki shales, suggesting more intense weathering of the Sararu than the Sarki shales. The index of compositional variability (ICV) of the Sararu shale is less than 1 (suggesting it is compositionally mature and was deposited in a tectonically quiescent setting). More than 1 for Sarki shales (suggest it is less mature and deposited in a tectonically active setting). Most shale of the Baluti plot parallel and along the A-K line in A-CN-K plots suggest intense chemical weathering (high CIA) without any clear-cut evidence of K-metasomatism. Clay mineral data, Al enrichment, CIA values, and A-CN-K plot suggest that the source area experienced high degree of chemical weathering under warm and humid conditions, especially in Sararu. Elemental ratios critical of provenance (La/Sc, Th/Sc, Th/Cr, Th/Co, Ce/Ce*PN, Eu/Eu*PN, and Eu/Eu*CN) shows slight difference between the Sararu and Sarki shales; and the ratios are similar to fine fractions derived from the weathering of mostly felsic rocks. The Eu/Eu* CN, Th/Sc, and low K2O/Al2O3 ratios of most shales suggest weathering from mostly a granodiorite source rather than a granite source, consistent with a source from old upper continental crust. Discrimination diagrams based on major and trace element content point to a role of the felsic-intermediate sources for the deposition of Baluti Formation, and probably mixed with mafic source rocks at Sararu section. The chondrite-normalized rare earth elements (REE) patterns are similar to those of PAAS, with light REE enrichment, a negative Eu anomaly, and almost flat heavy REE pattern similar to those of a source rock with felsic components. The source of sediments for the Baluti Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin; whereas the Sararu shale was affected by the mafic rocks of the Bitlis-Avroman-Bisitoun Ridge to the northeast of Arabian Plate. The tectonic discrimination diagrams, as well as critical trace and REE characteristic parameters imply rift and active setting for the depositional basin of the shale of Baluti Formation. The geochemical parameters such as U/Th, V/Cr, V/Sc, and Cu/Zn ratios indicate that these shales were deposited under oxic environment and also show that Sarki shale was deposited under more oxic environment than Sararu.  相似文献   

20.
东昆仑地区发育一套显生宙碎屑岩地层,包括下寒武统沙松乌拉组、中—上奥陶统纳赤台群、上石炭统—下二叠统浩特洛哇组、下三叠统洪水川组、中三叠统希里科特组以及上三叠统八宝山组。研究区砂岩的CIA值反映沙松乌拉组砂岩源区化学风化程度较高,其余各组砂岩源区化学风化程度较低。主量和微量元素研究结果表明各组砂岩源区以长英质岩石为主,包含少量中性成分。La、Ce、Th、U、∑REE含量和La/Sc、Th/Sc、Sc/Cr、La/Y比值指示沙松乌拉组和纳赤台群砂岩沉积环境为大陆岛弧或活动大陆边缘,浩特洛哇组砂岩形成于被动大陆边缘环境,洪水川组砂岩沉积环境为活动大陆边缘,希里科特组砂岩的微量元素含量及其比值接近于活动大陆边缘和被动大陆边缘,八宝山组砂岩沉积环境为活动大陆边缘。综合分析认为沙松乌拉组和纳赤台群砂岩形成于原特提斯洋俯冲阶段,浩特洛哇组砂岩形成于古特提斯洋持续扩张阶段,洪水川组砂岩形成于古特提斯洋俯冲阶段,希里科特组砂岩形成于陆(弧)陆初始碰撞阶段,八宝山组砂岩形成于陆陆全面碰撞—碰撞后阶段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号