首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
A large amount of loose debris materials were deposited on the slope of mountainous areas after the 2008 Ms 8.0 Wenchuan earthquake. During and after the earthquake, these loose debris deposits collapsed and slide into valleys or rivers, changing river sediment supply condition and channel morphology. To investigate the mechanisms of granular flow and deposition, the dynamics of slope failure and sediment transportation in typical mountainous rivers of different intersection angles were analyzed with a coupling model of Computational Fluid Dynamics and Discrete Element Method(CFD-DEM). The numerical results show that the change of intersection angle between the granular flow flume and the river channel can affect the deposit geometry and the fluid flow field significantly. As the intersection angle increases, the granular velocity perpendicular to the river channel increases, while the granular velocity parallel to the river channel decreases gradually. Compared to the test of dry granular flow, the CFD-DEM coupling tests show much higher granular velocity and larger volume of sediments entrained in the river. Due to the river flow, particles located at the edge of the deposition will move downstream gradually and the main section of sediments deposition moves from the center to the edge of the river channel. As a result, sediment supply in the downstream river will distribute unevenly. Under the erosion of fluid flow, the proportion of fine particles increases, while the proportion of coarse particles decreases gradually in the sediment deposition. The build-up of accumulated sediment mass will cause a significant increase in water level in the river channel, thus creating serious flooding hazard in mountainous rivers.  相似文献   

2.
Based on the data from gauging stations,the changes in water discharge and sediment load of the Huanghe (Yellow)River were analyzed by using the empirical mode decomposition(EMD)method.The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual,decadal,and multi-decadal scales,caused by the periodic oscillations of precipitation,and El Nio/Southern Oscillation(ENSO)affects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale.The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities,and human activities attribute more than precipitation to the reduction in the water discharge and sediment load,furthermore,water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load,respectively.The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.  相似文献   

3.
The influence of vegetation and sediment on flow characteristics in open channels cannot be neglected. To study the flow variability under the effects of the instream natural vegetation and sediment supply, experiments were conducted with varied water and sediment supply in a movable bed of a river prototype. The instantaneous three-dimensional velocities near two types of vegetation patches (the shrub and the weed) and along the centerline of the main channel with vegetation belts were measured using a 3-D side-looking acoustic Doppler velocimetry. The experimental results show that both the instream vegetation and sediment supply strongly affect the flow and turbulence characteristics. In the case of vegetation patches, both the shrub and weed have a considerable influence on the distribution of the streamwise velocity and turbulence intensity of their surrounding water. The streamwise velocity distribution followed as J-shape and linear shape around the weed and shrub under different experimental conditions. The turbulence intensity was large at the top of the weed and shrub; the shrub had its greatest influence on the downstream water flow. In the case of vegetation belts, the streamwise velocity along the centerline of the main channel exhibited an S-shape, J-shape and linear shape at different locations under varied water, vegetation structures and riverbed configurations. The turbulence intensity along the centerline of the main channel ranged from 0.0 to 0.1. The upstream turbulence intensity was affected considerably by a sediment supply, while the downstream turbulence intensity changed with the varied vegetation characteristics and riverbed topography. The second flow coefficient M-value increased longitudinally and was almost positive along the centerline of the main channel, implying that the rotational direction of the secondary current cell was clockwise.  相似文献   

4.
Li He 《山地科学学报》2018,15(5):1057-1070
Predicting the responses of an alluvial channel to changes in flow and sediment supply is essential for engineering design. Many methods have been developed in the last few decades to describe sectional bankfull characteristics (elevation and discharge); however, studies on long-term reach-scale bankfull discharge are still limited. In this study, a hydraulic model is built to calculate the reach-scale bankfull discharge, and the effects of reservoir building on downstream bankfull discharges are discussed. The studied river reach is located at the lower Wei River (WR), where the planned Dongzhuang Reservoir would be built on its largest tributary, the Jing River. A quasi-two-dimensional numerical model coupled with a bankfull discharge estimating method is put forward to calculate the reach-scale bankfull discharge. The soundness of the model is verified. Results show that the temporal variation of reach-scale bankfull discharge of the lower reach of the WR would be highly influenced by the planned reservoir, especially during the first 20 years of operation. The effect of the planned reservoir on bankfull discharge may reach its maximum when the total trapped sediment load reaches approximately 75% of the reservoir capacity. Our results show that after the first 17 years of operation, the effect of the planned reservoir on bankfull discharge of the river reach may decrease gradually. The soundness and predictive capability of the coupled model have also been calibrated by comparing with existing reservoirs. All analyses indicate that the numerical model can be used to predict the changed reach-scale bankfull discharge of the lower WR.  相似文献   

5.
The extra sediment load induced by typhoons and rainstorms in the Heshe River,Taiwan,are the principal reason for severe sediment-related disasters.The total sediment load during Typhoon Morakot in 2009 was 31 × 106m3,accounting for 95% of the annual sediment discharge.Large amounts of sediment load entered the Hoshe River,causing the braiding index(BI) to increase.Subsequently,the BI became positively correlated with the channel width in the Hoshe River.The specific typhoon and rainstorm events decreased after Typhoon Morakot,the sediment input decreased,inducing the fluvial morphology of the braided river to develop into a meandering river.The extra sediment load induced the deposition depth to increase and produce a headward deposition in the main channel and its tributaries.In addition,the river bend and the topographical notch restrained the sediment from moving downstream and being stored locally,indirectly increasing the erosion density of the river banks from 2.5 to 10.5 times.  相似文献   

6.
Modeling sediment transport depends on several parameters, such as suspended sediment concentration (SSC), shear stress, and settling velocity. To assess the ability of Pulse-Coherent Acoustic Doppler Profiling (PC-ADP) to non-intrusively quantify spatial and temporal SSC and settling velocity at seabed, a field experiment was conducted in the Beibu Gulf (Tonkin Gulf), in the South China Sea. The spatial profiles and temporal variations in SSC at 1 m above bottom were derived from PC-ADP acoustic backscatter intensity determinations after being calibrated with the optical backscatter sensor (OBS) measurements at the same elevation. The PC-ADP and OBS results agreed well. The temporal settling velocity obtained from Rouse profiles agreed well with the Soulsby formula based on size information by LISST (laser in situ scattering and transmissometry). Tides and tidal currents are diurnal in the gulf. SSC increased with increasing ebb and flood flow, and it rapidly decreased with the increase of distance from the seabed. The maximum SSC at 0.16 m and 1.3 m above bottom reached 816 mg/L and 490 mg/L during spring tides, respectively. The sediments consisted of mineral particles 23-162 μm in diameter and 0.05-2.04 cm/s in settling velocity. Generally, both the SSC and settling velocity followed variations in the bottom friction. Results suggest that PC-ADP is able to provide reasonable SSC and settling velocity measurements of both profiles and time series for a long study period.  相似文献   

7.
On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm per hour transported a total volume of more than 480×103 m3 debris, depositing the poorly sorted sediment including boulders up to 2-3 m in diameter both onto an existing debris fans and into the river. Our primary objective for this study was to analyze the characteristics of the triggering ra...  相似文献   

8.
The lateral distributions of depth-averaged velocity in open compound channels with emerged and submerged vegetated floodplains were analyzed based on the analytical solution of the depth-integrated Reynolds-Averaged Navier-Stokes equation with a term to account for the effects of vegetation. The three cases considered for open channels were two-stage rectangular channel with emerged vegetated floodplain, rectangular channel with submerged vegetated corner, and two-stage rectangular channel with submerged vegetated floodplain, respectively. To predict the depth-averaged velocity with submerged vegetated floodplains, we proposed a new method based on a two-layer approach where flow above and through the vegetation layer was described separately. Moreover, further experiments in the two-stage rectangular channel with submerged vegetated floodplain were carried out to verify the results. The analytical solutions of the cases indicated that the corresponding analytical depth-averaged velocity distributions agree well with the simulated and experimental prediction. The analytical solutions of the cases with theoretical foundation and without programming calculation were reasonable and applicable, which were more convenient than numerical simulations. The analytical solutions provided a way for future researches to solve the problems of submerged vegetation and discontinuous phenomenon of depth-averaged velocity at the stage point for compound channels. Understanding the hydraulics of flow in compound channels with vegetated floodplains is very important for supporting the management of fluvial processes.  相似文献   

9.
Tests of new in-situ seabed acoustic measurement system in Qingdao   总被引:1,自引:0,他引:1  
A new in-situ seabed acoustic measurement system is developed for direct in-situ measurement of sediment geoacoustic properties (compressional wave velocity and attenuation). The new in-situ system consists of two parts: the deck control unit and the underwater measurement unit. The underwater measurement unit emits sonic waves that propagate through the seafloor sediment, receives the returning signals, and transmits them to the deck control unit for waveform display and analysis. The entire operation is controlled and monitored in real time by the deck control unit on the research vessel and can provide recording of full waveforms to determine the sound velocity and attenuation. This paper outlines the design of the system, the measurement process, and demonstrates its application in tests carded out on seabed sediment off the Qingdao coast, China. The test results show that the system performed well and rapidly provided accurate in-situ acoustic velocity and attenuation estimates of the seafloor sediment.  相似文献   

10.
Debris flow often causes enormous loss to life and property,especially on alluvial fans.Engineering structures such as retention check dams are essential to reduce the damage.In hazard mitigation evaluation and planning it is of significance to determine the location,size and type of dam and the effects of damage mitigation.We present a numerical simulation method using Kanako simulator for hazard mitigation planning of debris flow disaster in Tanjutani Gully,Kyoto City,Japan.The simulations were carried out for three situations:1) the simulations of erosion,deposition,hydrograph changing and inundation when there were no mitigation measures;2) the simulations of check dams in four locations(470 m,810 m,1,210 m and 1,610 m from the upstream end) to identify the best location;3) the simulations of check dams of three types(closed,slit and grid) to analyze their effects on sediment trapping and discharge reduction.Based on the simulations,it was concluded that two closed check dams(located at 470 m and 1,610 m from the upstream end) in the channel and a drainage channel on the alluvial fan can reduce the risk on the alluvial fan to an acceptable level.  相似文献   

11.
为准确反演勘察孔地层岩性信息、提高岩屑反演勘察孔地层岩性的准确性, 依托某隧道水平定向钻地质勘察项目, 开展了水平定向钻隧道地质勘察孔岩屑运移与地层相关性研究。研究结果表明: 依据岩屑运移速度、费祥俊临界流速理论和Larsen最小返速理论对现场岩屑运移形式的分析, 推知不同围岩岩屑颗粒在水平定向钻孔环空内的运移形式以推移为主, 少部分悬移, 且存在少量岩屑床; 在水平定向钻勘察工程现场, 钻头处产生的地层岩屑最先以悬浮运移状态随泥浆返出; 基于物料输送相关理论分析岩屑颗粒自由悬浮和运动方程, 建立了水平定向钻勘察孔岩屑悬移运移模型; 依托现场碳质板岩和石英片岩相关参数进行了岩屑运移与地层相关性分析, 分别得出完整地层和断层破碎带的岩屑运移孔壁阻力系数, 且断裂带处岩屑运移孔壁阻力系数约为非断裂带处的2.72倍; 得出不同直径钻杆工作范围内的钻孔环空岩屑最终悬浮运移速度, 建立了岩屑运移与地层的关联分析计算模型。研究结果为准确反演勘察孔地层岩性信息, 以及后续隧道的顺利施工提供了理论和数据支持。   相似文献   

12.
Continental shelf islands are contributors of terrestrial sediment supply to shelf regions,and the sediment flux from these islands shall be quantified.We calculated the sediment flux of continental shelf islands in the southeastern China using two empirical equations under two preconditions.The first,the sediment load/yield of the islands has the same pattern as the adjacent small,mountainous rivers along the coastline;and the second,each of the islands was treated as a single catchment.The results show that the sediment supply from these islands reached an order of magnitude of 1 Mt/a,which is comparable to the supply from the local smaller rivers.A sensitivity analysis indicates that this value repre sents the lower limit of estimate;if the accurate amount of sub-catchments of any island is considered,then this value will be enhanced slightly.This study demonstrates that the sediment supply from continental shelf islands to oceans is an important factor affecting the regional sedimentation and,therefore,should be paid with attention.  相似文献   

13.
In marine engineering, the strength of a submarine sediment is an indispensable parameter for assessment of construction. In this study, a free-fall cone penetrator named IPen was developed to realize a rapid and efficient measurement of sediment strength. The equipment is characterized by modular design and self-contained data acquisition. It is equipped with an acceleration sensor, a water pressure sensor, and a piezocone penetration test(CPTu) probe. It is designed to be released from near seabed surface with a releaser and then fall freely to provide a higher penetration velocity. Its maximum working depth is approximately 2500 m and maximum penetration depth is approximately 3 m. To derive the correlation between penetration resistance and sediment strength, a calibrator was devised to determine the penetration-rate factor. In addition, the factor applicable to in situ test points was determined in laboratory experiments. In June 2016, the IPen was tested in situ in the South Yellow Sea, China, during a shared voyage funded by the National Science Foundation. Meanwhile, undisturbed column samples were collected for laboratory tests. Based on the in situ test results, it was demonstrated that the IPen could accurately record the working states of various sensors during the freely falling course. IPen test results reliably reflected the sediment strength at all the testing points when compared with laboratory calibration tests, in situ vane tests and penetration tests, laboratory penetration tests, and unconsolidated and undrained triaxial compression tests.  相似文献   

14.
Laser in situ scattering and transmissometry(LISST) significantly improves our ability to assess particle size distribu-tion(PSD) in seawater, while wide-ranging measurements of the organic-inorganic compositions of suspended particulate matters(SPM) are still difficult by using traditional methods such as microscopy. In this study, PSD properties and SPM compositions around the Bohai Strait(China) were investigated based on the measurements by LISST in combination with hydro-biological parameters collected from a field survey in summer 2014. Four typical PSD shapes were found in the region, namely right-peak, left-peak, dou-ble-peak and negative-skew shapes. The double-peak and negative-skew shapes may interconvert into each other along with strong hydrodynamic variation. In the upper layer of the Bohai Sea, organic particles were in the majority, with inorganic particles rarely observed. In the bottom layer, SPM were the mixture of organic and inorganic matters. LISST provided valuable baseline information on size-resolved organic-inorganic compositions of SPM: the size of organic particles mainly ranged from 4 to 20 μm and 40 to 100 μm, while most SPM ranging from 20 to 40 μm were composed of inorganic sediment.  相似文献   

15.
Excessive sedimentation in mountain stream ecosystems is a critical environmental problem due to the clogging of streambeds by sediment particles within the hyporheic zone,with detrimental effects on fish spawning habitat.In this research,the effects of an array of boulders in regulating the intrusion of incoming sand within a gravel substrate were evaluated by performing detailed experiments in a laboratory flume.A unique experimental setup and two different sampling techniques were utilized for measuring the infiltrated sand within the gravel bed under two bed shear stress conditions(moderate vs.high).For comparison purposes,experiments were performed without and with the presence of partially submerged to the flow(protruding) boulders,which is typical for the average flow conditions found in mountain streams.Results indicated that sand infiltrated primarily in the upper part of the gravel bed creating a surface seal which hindered the penetration of sand particles deeper into the bed.An exponential decrease of the amount of the infiltrated sand within the hyporheic zone was observed in all experiments regardless of the presence of boulders.However,the presence of boulders promoted sediment intrusion of sand particles especially for the moderate applied bed shear stress condition,since the total amount of the infiltrated sand was found to be on average 44% greater whenboulders were present.The findings from this study can provide additional insight regarding the role of boulders on promoting downwelling of flow and sediment within the gravel substrate with potential effects on fish habitat.  相似文献   

16.
Actinomycetes population from continental slope sediment of the Bay of Bengal was studied. Samples were collected during two voyages of FORV Sagar Sampada in 2004 (May-June) and 2005 (July) respectively from 11 transects (each transect had ca. 200 m, 500 m, and 1 000 m depth stations). The physicochemical parameters of overlying water, and sediment samples were also recorded. The actinomycete population ranged from 5.17 to 51.94 CFU/g dry sediment weight and 9.38 to 45.22 CFU/g dry sediment weight during the two cruises respectively. No actinomycete colony was isolated from stations in 1 000 m depth. Two-way analysis of variance showed significant variation among stations (ANOVA two-way, P〈0.05), but no significance was found between the two cruises (ANOVA two-way, P〈0.05). Populations in stations in 500 m depth in both cruises were higher than that of 200 m depth stations with statistically insignificant difference (ANOVA two-way, P〉0.05). Three actinomycetes genera were identified. Streptomyces was found to be the dominating one in both the cruises, followed by Micromonospora, and Actinomyces. The spore of Streptomyces isolates showed the abundance in spiral spore chain. Spore surface was smooth. Multiple regression analysis revealed that the influencing physico-chemical factors were sediment pH, sediment temperature, TOC, porosity, salinity, and pressure. The media used in the present study was prepared with seawater. Thus, they may represent an autochthonous marine flora and deny the theory of land runoff carriage into the sea for adaptation to the salinity of the seawater and sediments.  相似文献   

17.
EVOLUTIONOFRAPIDSOFCREEKMOUTH-BARATGEZHOUBARESERVOIRANDTHEIMPACTSONNAVIGABLECHANNELINTHEUPPERREACHESOFTHECHANGJIANGRIVER¥LinC...  相似文献   

18.
Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4–8 km wide. The chaotic (or continuous) middle (or high) a...  相似文献   

19.
Strong wind events frequently result in creating large areas of windthrow, which causes abrupt environmental changes. Bare soil surfaces within pits and root plates potentially expose soil to erosion. Absence of forest may alter the dynamics of water circulation. In this study we attempt to answer the question of whether extensive windthrows influence the magnitude of geomorphic processes in 6 small second-to third-order catchments with area ranging from 0.09 km2 to 0.8 km2. Three of the catchments were significantly affected by a windthrow which occurred in December 2013 in the Polish part of the Tatra Mountains, and the other three catchments were mostly forested and served as control catchments. We mapped the pits created by the windthrow and the linear scars created by salvage logging operations in search of any signs of erosion within them. We also mapped all post-windthrow landslides created in the windthrow-affected catchments. The impact of the windthrow on the fluvial system was investigated by measuring a set of channel characteristics and determining bedload transport intensity using painted tracers in all the windthrow-affected and control catchments. Both pits and linear scars created by harvesting tend to become overgrown by vegetation in the first several years after the windthrow. The only signs of erosion were observed in 10% of the pits located on convergent slopes. During the period from the windthrow event in 2013 until 2019, 5 very small(total area 100 m2) shallow landslides were created. The mean distance of bedload transport was similar(t-test, p=0.05) in most of the windthrow-affected and control catchments. The mapping of channels revealed many cases of root plates fallen into a channel and pits created near a channel. A significant amount of woody debris delivered into the channels influenced the activity of fluvial processes by creating alternating zones of erosion and accumulation.  相似文献   

20.
Coseismic landslides and subsequent mobilization of sediment greatly aggravated the landscape evolution and river sedimentation after the Wenchuan earthquake. The debris-flow alluvial fan and river morphological index was combined to describe quantitatively the effects of debris-flow sediment on the river characteristics in Longmen Mountains. The section of the Min River from the urban area of the Wenchuan county to the epicenter, the Yingxiu town in this county, was selected as the study area. We identified 27 river-blocking debrisflows(5 partial-, 7 semi-, 7 over semi-, and 5 fullyblocking degrees) in the study area via remote sensing interpretation and field survey. Based on this, the response of river longitudinal profile and curvature to debris-flow sediment was qualitatively and quantitatively analyzed. The results show that the channel gradient has decreased due to debris-flow aggradation, while two marked peaks in the river steepness index(ksn, represents the relative steepness degree of the channel) changed from 585 m0.9 to 732 m0.9 in zone 1, from 362 m0.9 to 513 m0.9 in zone 2. Moreover, the main channel has undergone substantial lateral migration with channel width decreased and river curvature increased. The temporal and spatial variation between river morphological characteristics and debris-flow sediments in short-term provides insights into the internal dynamic role of mass wasting processes in river morphology, which could be served as useful information for natural hazards management to prevent the river from being blocked by episodically debris flows after the earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号