首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of trace metals in remote alpine region is an effective way to understand the impacts of regional human activity and vegetation on the alpine ecosystem. In this study, the concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the soils of Gongga Mountain, Eastern Tibetan Plateau, were investigated to reveal their seasonal and spatial distribution and enrichment state, and to decipher the effects of atmospheric deposition and vegetation on their distributions among five vegetation zones. The results showed that the concentrations of Cd, Pb, and Zn were higher in the O horizon than in other horizons despite the seasonal changes, whereas Cu was enriched in the C horizon. The enrichment states of the metals studied in the soils decreased in the order of Cd > Pb > Zn > Cu. Cd and Pb were mainly sourced from atmospheric deposition; Zn was from both atmospheric deposition and parent materials, whereas Cu was mainly from parent materials. Seasonally, the trace metals were generally higher in May and December but lower in September, implying the impact of vegetation on the distribution of trace metals under the plant uptake and the litter decomposition. Spatially, the higher enrichment of Cu, Pb, and Zn in the soils existed in the mixed broadleaf-coniferous forests and coniferous forests (approximately 3000 m above sea level). The results suggested that atmospheric deposition and biological processes are main factors controlling the seasonal and spatial distribution of trace metals in the soils of the remote alpine ecosystem.  相似文献   

2.
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones: (1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and (2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarsescale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetationgeoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.  相似文献   

3.
The present study was carried out in Tungnath alpine meadows of Kedarnath Wild Life Sanctuary, Western Himalaya from subalpine to upper alpine zone. A total of four summits were selected along an altitudinal gradient and sampled for detailed vegetation analysis using multi summit approach as per Global observation research initiative in alpine environments(GLORIA). Species richness, diversity, and evenness among four summits as well as the interaction between environmental variables with plant communities were assessed. Monthly mean soil temperature was calculated using data retrieved from geo-precision temperature logger in order to identify the trend of soil temperature among different season and altitudinal gradient and its implications to plant communities. Soil samples were analyzed fromeach summit by collecting randomized composite soil samples. The indirect non-metric multidimensional scaling(NMDS) and direct canonical correspondence analysis(CCA) tools of ordination techniques to determine the linkage between plant species from various sample summits and biotic/abiotic environmental gradients were used in the present study. The results of the study demonstrated increase in species richness as soil temperature increases, the ecotone representing summits were found most warm summits followed by highest species richness. Annual soil temperature increased by 1.43°C at timberline ecotone. Whereas, at upper alpine zone the soil temperature increased by 0.810 C from year 2015 to 2016. S?rensen's similarity index was found to be increased between subalpine and upper alpine zone with increase in the presence of subalpine plant species at upper alpine zone. Both the ordination tools separate the subalpine summit and their respective vegetation from summits representingtimberline ecotone and upper alpine zone. Soil p H, altitude, soil cation exchange capacity were found as the key abiotic drivers for distribution of plant species.  相似文献   

4.
The study intended to describe the alpine vegetation of a protected area of the northwestern Himalaya and identify the important environmental variables responsible for species distribution. We placed random plots covering different habitats and altitude to record species composition and environmental variables. Vegetation was classified using hierarchical cluster analysis and vegetation-environment relationships were evaluated with Canonical Correspondence Analysis. Four communities, each in alpine shrub and meadows were delineated and well justified in the ordination plots. Indicator species for the different communities were identified. Maximum species richness and diversity were found in community IV among shrub communities and community II among the meadows. Studied environmental variables explained 61.5% variation in shrub vegetation and 59.8% variation in meadows. Soil variables explained higher variability (∼35%) than spatial variables (∼21%) in both shrubs and meadows. Altitude, among the spatial variables and carbon/nitrogen ratio and nitrogen among the soil variables explained maximum variation. About 40% variations left unexplained. Latitude and species diversity among the other variables had significant correlation with ordination axes. Study showed that altitude and C/N ratio played a significant role in species composition. Extensive sampling efforts and inclusion of other non-studied variables are also suggested for better understanding.  相似文献   

5.
In this paper,an updated vegetation map of the permafrost zone in the Qinghai-Tibet Plateau(QTP) was delineated.The vegetation map model was extracted from vegetation sampling with remote sensing(RS) datasets by decision tree method.The spatial resolution of the map is 1 km×1 km,and in it the alpine swamp meadow is firstly distinguished in the high-altitude areas.The results showed that the total vegetated area in the permafrost zone of the QTP is 1,201,751 km~2.In the vegetated region,50,260 km~2 is the areas of alpine swamp meadow,583,909 km~2 for alpine meadow,332,754 km~2 for alpine steppe,and 234,828 km~2 for alpine desert.This updated vegetation map in permafrost zone of QTP could provide more details about the distribution of alpine vegetation types for studying the vegetation mechanisms in the land surface processes of highaltitude areas.  相似文献   

6.
The investigation of distribution patterns of species diversity is significant for successful biodiversity conservation. The spatial patterns of vegetation and different life-forms species diversity along an elevation gradient in the middle section of the southern slope of the Tianshan Mountains in Xinjiang, China were explored, using the detrended canonical correspondence analysis(DCCA) and the generalized additive model(GAM) methods based on a field survey of 53 sampling plots. In this work 158 species of seed plants were recorded, including 141 herbaceous, 14 shrub, and 2 tree species, in which the woody plants are very limited. 53 sampling plots were classified into 9 major plant communities. The results indicate that the herb communities were the most sensitive to changes in elevation gradient. The diversity indices of the community as a whole presented bimodal patterns. The peak values for the species diversities were found in the transition region between mountain steppe desert and mountain desert steppe(2,200–2,300m), and in the alpine grassland region(2,900–3,100m), while maximum species diversities were in the areas of intermediate environmental gradient. The main environmental factors on the distribution patterns in plant diversity were the elevation, soil water, total nitrogen, available nitrogen, organic matter, and total salt. The response tendency of the four diversity indices for the whole community to the soil environment was the same as that of the herb layers.  相似文献   

7.
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA),this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Basin,which is situated in the easternmost end of the Tianshan Mountains,Xinjiang Uygur Autonomous Region,China.For the zonal vegetation,community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors.The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude,soil pH and soil salt content.With increasing elevation,the soil pH and total salt content decrease but the contents of soil organic matter,soil water,total nitrogen and total phosphorus increase gradually.In the CCA ordination diagrams,the sample plots and main species can be divided into five types according to their adaptations to the environmental factors.Type I is composed of desert vegetation distributed on the low mountains,hills,plains and deserts below an elevation of 1900 m;type II is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m,and includes steppe desert,desert steppe and wetland meadow;type III is very simply composed of only salinized meadow;type IV is distributed above an elevation of 2300 m,containing mountain steppe,meadow steppe,subalpine meadow and alpine meadow;type V only contains salinized meadow.The results show that with increasing elevation,species combination changes from the xerophytic shrubs,semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.  相似文献   

8.
This study provides a checklist of species distributed at the altitude gradient of Moghan-Sabalan rangelands in Ardabili province, Northwest Iran. We evaluated the changes in species composition, growth types of species, Raunkiaer’s life forms, geographical distribution, threat and endemicity status, and palatability of species along two altitudinal gradients in the sampling plots, which were conducted in eleven sites/habitats with 300 meters above sea level (masl) altitude intervals (from 100 to 3300 masl). We assessed the plant species composition with special reference to the gradient analysis, and identified overall 396 species, which was comprising 44 families and 194 genera. Results showed that Asteraceae family is by far the most species-rich family, followed by Poaceae, Fabaceae, Caryophyllaceae and Brassicaceae. Among the genera, Astragalus is the most diverse genus, followed by Allium, Veronica and Bromus, Galium, Silene and Ranunculus. Results indicated that the number of species increased as the altitude increased to 1200–1500 masl, but then starts to decline to 3300 masl. Family-to-genera ratio was 1:4.4, the family-tospecies ratio was 1:9, and the genera-to-species ratio was 1:2.04. Growth type of species analysis shows that the frequency of perennial plants was higher in the study area followed by annual species while the lower group was biennial species. The number of annuals showed a decreasing trend towards higher altitude. Hemicryptophytes and therophytes were the most frequent life forms constituted each with (41.9%). Hemicryptophytes showed an increasing trend with altitude, while therophytes showed a decreasing trend with altitude increase, followed by geophytes, chamaephytes, and phanerophytes. Results showed more than half of the species of the study area belonged to Iran-Turanian region and these species showed an increasing trend with altitude. In contrast, Sahara-Sindian species comprise a minor component of the spectrum, with decreasing trend with altitude. The rare and endangered species out of the surveyed taxonomic groups comprised 53 species in total which 29 of them are considered lower risk (LR), 13 data deficient (DD), 5 vulnerable (Vu) and with 3 rare (R) and identified endemic plants comprised 24 species. Some 56.6% species were identified as class III, 22.6% were class I and 20.8% were class II as the palatability variation. Moghan-Sabalan rangelands require strong conservation management policies in case of species loss and changing natural communities due to the occurrence of conversion into cropland, over-grazing and other anthropogenic effects.  相似文献   

9.
Understanding the factors that drive variation in species distribution is a central theme of ecological research. Although several studies focused on alpine vegetation, few efforts have been made to identify the environmental factors that are responsible for the variations in species composition and richness of alpine shrublands using numericalmethods. In the present study, we investigated vegetation and associated environmental variables from 45 sample plots in the middle Qilian Mountains of the northwestern China to classify different community types and to elucidate the speciesenvironment relationships. We also estimated the relative contributions of topography and site conditions to spatial distribution patterns of the shrub communities using the variation partitioning. The results showed that four shrub community types were identified and striking differences in floristic composition were found among them. Species composition greatly depended on elevation, slope,shrub cover, soil p H and organic carbon. The important determinants of species richness were soil bulk density and slope. No significant differences in species richness were detected among the community types. Topography and site conditions had almost equal effects on compositional variation. Nonetheless,a large amount of the variation in species composition remained unexplained.  相似文献   

10.
基于NDVI的三峡大坝岸边植被时空特征分析   总被引:5,自引:1,他引:4  
三峡工程建设对生态系统中植被的破坏很明显,尤其是岸边带附近。本文基于多时相遥感图像,采用NDVI序列计算植被覆盖度,通过比较三峡大坝蓄水前后1978、1999、2006年3个时期坝区9月份岸边3km缓冲区的植被覆盖度特征、动态变化,描述了研究区各年份植被覆盖分布以及近30年的植被覆盖变化特征;同时,从面积角度定量,采用分级分析了变化大小,并应用统计学的非参数Wilcoxon秩和检验方法对不同时期、不同土地利用类型的覆盖度样本进行了检验,得到如下结论:近30年间,三峡大坝岸边带植被覆盖变化显著,1978~1999年时间段,由于大坝工程建设植被破坏程度较高,有植被覆盖的区域面积下降了3.31km2;1999年至2006年时间段,在有8km2的淹没区情况下,有植被覆盖的区域仅下降1.57km2,说明植被恢复较明显。近30年间,三峡大坝植被覆盖度整体上有增加的趋势。  相似文献   

11.
The vegetation of alpine tundra in the Changbai Mountains has experienced great changes in recent decades. Narrowleaf small reed(Deyeuxia angustifolia), a perennial herb from the birch forest zone had crossed the tree line and invaded into the alpine tundra zone. To reveal the driven mechanism of D. angustifolia invasion, there is an urgent need to figure out the effective seed distribution pattern, which could tell us where the potential risk regions are and help us to interpret the invasion process. In this study, we focus on the locations of the seeds in the soil layer and mean to characterize the effective seed distribution pattern of D. angustifolia. The relationship between the environmental variables and the effective seed distribution pattern was also assessed by redundancy analysis. Results showed that seeds of D. angustifolia spread in the alpine tundra with a considerable number(mean value of 322 per m2). They were mainly distributed in the low elevation areas with no significant differences in different slope positions. Effective seed number(ESN) occurrences of D. angustifolia were different in various plant communities. Plant communities with lower canopy cover tended to have more seeds of D. angustifolia. Our research indicated reliable quantitative information on the extent to which habitats are susceptible to invasion.  相似文献   

12.
Although snow cover plays an important role in structuring plant diversity in the alpine zone, there are few studies on the relationship between snow cover and species diversity of alpine meadows on the eastern Qinghai-Tibetan Plateau. To assess the effect of snow cover on plant species diversity of alpine meadows, we used ten parallel transects of 60 m × 1 m for this study and described the changes in species diversity and composition associated with snow depth. With the division of snow depth into six classes, the highest species richness (S) and species diversity (H′) occurred with an intermediate snow depth, i.e., class Ⅲ and class Ⅳ, showing a unimodal curve with the increase in snow depth. The relationship between snow depth and plant diversity (both richness and Shannon index) could be depicted by quadratic equations. There was no evident relationship between diversity (both S and H′) and soil water content, which implied that other more important factors influenced species diversity. The patterns of diversity found in our study were largely attributed to freeze-thaw alteration, length of growing season and disturbances of livestock grazing. Furthermore, snow depth affected species composition, as evaluated by the Sorensen's index of similarity. In addition, almost all species limited to one snow depth class were found only in class Ⅲand class Ⅳ, indicating that intermediate snow depth was suitable for the survival and growth of many alpine species.  相似文献   

13.
Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoigê Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoigê Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index(NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index(NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 km2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.  相似文献   

14.
Introduction High mountain ecosystems are comparatively thrilling and sensitive at least at the upper elevation levels, and are determined by abiotic climate related ecological factors. Therefore, the ecosystems at the low temperature limits of plant life are generally considered to be particularly sensitive to climate changes (Koerner 1999). As temperature is a key factor for high mountain plants (Koerner and Larcher 1988, Gottfried et al. 1998), an upward migration of species must be conse…  相似文献   

15.
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-30 cm) showed no significant differences, while AP content in top soil (0-15 cm) was significantly higher than that in sub-top soil (15-30 cm). SOC content was correlated positively with TN and TP content (r = 0.901 and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.  相似文献   

16.
互花米草是中国东部河口滩涂湿地主要入侵物种之一,其与本地物种芦苇竞争生长,形成了大范围的混合交错带。该交错带是研究湿地生态系统动态变化的重要信息,但因2种物种光谱的相似性及其在交错带的组成复杂性,使利用遥感技术提取交错带难度较大。因此,本文提出了一种将二者生长物候差异与其光谱特征相结合,考虑二者海陆位置分布差异,运用实测剖面观测数据确定光谱指标和阈值的综合提取方法。运用高分一号多光谱遥感数据,通过分析不同时相互花米草与芦苇冠层光谱差异,确定用来提取混合交错带的高分遥感影像,实现了研究区互花米草-芦苇混合交错带的提取。结果表明:不同时相宜选用不同的提取指标,本研究中在春季选择了近红外波段反射率,而秋季则选择了红波段反射率;2个时相的混合交错带范围存在明显差异,客观反映了互花米草与芦苇在不同季节的竞争状况。  相似文献   

17.
《山地科学学报》2020,17(8):1974-1988
In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Himalaya.We employed a globally standardized Multi-Summit Approach and four spatially isolated summits spanning an elevation gradient of 210 m(between 3530-3740 m a.s.l.) from natural treeline to nival zone were studied.Sampling of the summits was carried out in the year 2018 to collect floristic data together with records of soil temperature.A total of 142 vascular plant species were recorded in the sampled summits.Majority of the species were of herbaceous growth form and with perennial life span.Based on Raunkiaer's life form,hemicryptophytes were the most dominant followed by therophytes and phanerophytes.The summit flora showed the predominance of narrow-endemic species,with broad-and non-endemics declining with elevation.A significant relationship between growth form,Raunkiaer's life form,and the degree of endemism with elevation was observed.Both species diversity and soil temperature showed a monotonic decrease with increasing elevation.Interestingly,soil temperature clearly determined the magnitude of species diversity on the summits.Furthermore,based on floristic composition,the lowest summit had the highest dissimilarity with the rest of the summits.The present study employed globally standardized protocol to scientifically assess the patterns of plant diversity on the alpine mountain summits of Kashmir Himalaya,which in turn has wide implications towards long-term monitoring of climate change impact on alpine biodiversity in the rapidly warming Himalaya.  相似文献   

18.
 青海三江源区是长江、黄河、澜沧江3大河流的发源地。草地是该区域的主体生态系统,高寒草甸是其主要类型。近30年来,三江源地区草地发生了大面积的退化,不同退化程度的高寒草甸光谱特征是高寒草甸遥感分类和退化监测的重要依据。2009年8月作者在青海省三江源区对高山嵩草、矮嵩草和藏嵩草3种未退化高寒草甸,以及4种不同退化程度的高山嵩草草甸,进行了地面光谱测量和草地样方调查。同时对实测光谱曲线进行了比较,提取和分析了它们在557nm、675nm和760nm处反射率,以及"红边"斜率。结果表明,3种高寒草甸的光谱曲线,以及4种退化程度高寒草甸和未退化高寒草甸的光谱曲线在557nm处的反射率差异较小,在675nm和760nm处的反射率及"红边"斜率存在明显差异,能有效区分高寒草甸,可为高寒草甸遥感自动分类和退化监测提供依据。不同退化程度的高寒草甸地上生物量与其光谱曲线的"红边"斜率和归一化植被指数(NDVI)线性拟合的确定系数分别为0.93和0.87,其相关性较好,可用于高寒草甸地上生物量的估算。本文提取的光谱反射率的"红边"斜率不仅能有效区分3种典型高寒草甸和不同退化程度的高寒草甸,且与高寒草甸地上生物量的关系优于NDVI,对高寒草甸识别分类,退化监测和生物量估算有重要意义。  相似文献   

19.
《山地科学学报》2020,17(9):2081-2096
The study of plant phenology has frequently been used to link phenological events to various factors, such as temperature or photoperiod.In the high-alpine environment, proper timing of the phenological cycle has always been crucial to overcome harsh conditions and potential extreme events(i.e. spring frosts) but little is known about the response dynamics of the vegetation, which could shape the alpine landscape in a future of changing climate. Alpine tundra vegetation is composed by an array of species belonging to different phytosociological optima and with various survival strategies, and snowbed communities are a relevant expression of such an extreme-climate adapted flora.We set eight permanent plots with each one in a snowbed located on the Cimalegna plateau in Northwestern Italy and then we selected 10 most recurring species among our plots, all typical of the alpine tundra environment and classified in 3different pools: snowbed specialists, grassland species and rocky debris species. For 3 years we registered the phenophases of each species during the whole growing season using an adaptation of the BBCH scale. We later focused on the three most biologically relevant phenophases, i.e., flower buds visible, full flowering, and beginning of seed dispersion. Three important season-related variables were chosen to investigate their relationship with the phenological cycle of the studied species:(i) the Day Of Year(DOY),the progressive number of days starting from the 1 st of January, used as a proxy of photoperiod,(ii) Days From Snow Melt(DFSM), selected to include the relevance of the snow dynamics, and(iii) Growing Degree Days(GDD), computed as a thermal sum. Our analysis highlighted that phenological development correlated better with DFSM and GDD than with DOY.Indeed, models showed that DOY was always a worse predictor since it failed to overcome interannual variations, while DFSM and marginally GDD were better suited to predict the phenological development of most of the species, despite differences intemperature and snowmelt date among the three years. Even if the response pattern to the three variables was mainly consistent for all the species, the timing of their phenological response was different.Indeed, species such as Salix herbacea and Ranunculus glacialis were always earlier in the achievement of the phenophases, while Agrostis rupestris and Euphrasia minima developed later and the remaining species showed an intermediate behavior. However, we did not detect significant differences among the three functional pools of species.  相似文献   

20.
The Himalaya harbor rich floristic diversity which is of immense scientific interest and socio-economic importance.In this study, floristic diversity of a remote alpine valley has been studied based on information extracted from remotely sensed satellite data along with field surveys undertaken during 2008-2014.Analysis of vegetation information from satellite data revealed that ~75% of the area is covered with natural vegetation which comprises lush green coniferous forests, alpine pastures and alpine scrub lands.With inputs from vegetation information extracted from satellite data, comprehensive field surveys were planned to document the floristic diversity of the region.Analysis of species composition showed a total of 285 plant species,belonging to 191 genera in 60 families.Of these, 250 species are herbs, 14 shrubs, 2 sub-shrubs and 19 trees.The dicotyledons are represented by 240 species, monocotyledons 30, gymnosperms 04, andpteriodophytes 11 species.Asteraceae is the largest family with 35 species.During the present study, 5species(Corydalis cashmeriana, Hippophae rhamnoides, Primula minutissima, Saussurea sacra and Inula orientalis) have been recorded for the first time from this Himalayan region.The study demonstrates the benefits of geo-informatics in floristic studies, particularly the robustness of remotely sensed data in identifying areas with potentially high species richness, which would be otherwise difficult in a complex mountainous terrain using traditional floristic surveys alone.The present study is expected to provide baseline scientific data for cutting edge studies relating to long term ecological research, bioprospecting, possible impacts of changing climate on vegetation and sustainable use of plant resources in this Himalayan region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号