首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
土壤分层信息,特别是表土层结构,对土地生产力具有重要影响,是评价土壤质量的一个重要指标。为了快速、准确地获取土壤分层信息,本文利用探地雷达对分层土壤进行了回波信号采集,并分别在时域和频域分析土壤层位置和层厚信息。首先在信号预处理的基础上,借助包络检波方法确定在土壤分层界面在时域上的位置;然后获取电磁波速度,得到土壤分层厚度。考虑到土壤介电常数与电磁波在土壤中传播速度的相关性,采用短时傅里叶变换方法(Short-time Fourier Transform,STFT)获取各土壤层时频域特征值,并利用回归分析建立特征值与介电常数之间的数学关系,实现对各土壤层的介电常数估算,从而计算出电磁波传播速度,进而确定土壤各层厚度。为验证算法的有效性,分别对理想模拟实验环境和农田环境进行了探地雷达实验,结果表明利用包络检波对探地雷达回波信息进行分析,土壤层检出率达到94.5%,借助STFT谱分析进行探地雷达回波速度估计,对于70 cm深度以上土层厚度计算误差大都保持在10%以下,但随着土壤深度的增加,误差变大。总体来说,本方法能有效识别浅层土壤的分层信息,可应用于实际生产中耕层厚度的估测。  相似文献   

2.
水下的地质雷达探测与常规的地质雷达探测具有显著的不同点。文中对CPML吸收边界条件的公式进行推导,并通过数值模拟对均匀介质以及非均匀介质中吸收边界条件的吸收效果进行了验证,数值模拟的波场快照证明了CPML吸收边界条件在水下的地质雷达数值模拟中具有很好的吸收效果。通过对水平层状介质模型以及倾斜层状介质模型开展数值模拟,并结合实际探测的雷达图像,证明地质雷达对于水下地层的探测能够取得良好的效果;通过对空洞体位于不同深度时的数值模拟,证明了地质雷达对于水下的空洞探测也能对其位置及规模进行较为准确的判断。这为水下地质灾害的探测提供了理论依据及指导。  相似文献   

3.
Studying the relationship between climate factors and soil organic carbon (SOC) is vitally important. However, how SOC responses to climate (temperature and precipitation) at cohesive extents is poorly studied. Two transects of approximately the same length (transect P and transect T) were selected to examine the variation of SOC content in relation to mean annual temperature (MAT) and mean annual precipitation (MAP). The coefficients of partial correlation between SOC density and MAT (Rt) and MAP (Rp) were determined to quantify the relationships between SOC density and the two climate factors. The results indicated that for transect T, Rt was statistically significant once the extent level was greater than or equal to two fundamental extent units, while for transect P, Rp showed statistical significance only at extent levels which were greater than two fundamental extent units. At the same extent levels but in different transects, Rts exhibited no zonal difference, but Rps did once the extent level was greater than two fundamental extent units. Therefore, to study the relationship between SOC density and different climate factors, different minimum extent levels should be examined. The results of this paper could deepen the understanding of the impacts that SOC pool has on terrestrial ecosystem and global carbon cycling.  相似文献   

4.
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers (0-400 cm depth) was measured before and after the rainy season in severe drought (2015) and normal hydrological year (2016) in three vegetation restoration areas (artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers (0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers (below 100 cm). In 2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau  相似文献   

5.
The conventional method which assumes the soil distribution is continuous was unsuitable for estimating soil organic carbon density(SOCD) in Karst areas because of its discontinuous soil distribution. The accurate estimation of SOCD in Karst areas is essential for carbon sequestration assessment in China. In this study, a modified method,which considers the vertical proportion of soil area in the profile when calculating the SOCD, was developed to estimate the SOCD in a typical Karst peak-cluster depression area in southwest China. In the modified method, ground-penetrating radar(GPR) technology was used to detect the distribution and thickness of soil. The accuracy of the method was confirmed through comparison with the data obtained using a validation method, in which the soil thickness was measured by excavation. In comparison with the conventional method and average-soil-depth method,the SOCD estimated using the GPR method showed the minimum relative error with respect to that obtained using the validation method. At a regional scale, the average SOCDs at depths of 0-20 cm and 0-100 cm, which were interpolated by ordinary kriging,were 1.49(ranging from 0.03-5.65) and 2.26(0.09-11.60) kgm-2based on GPR method in our study area(covering 393.6 hm2), respectively. Therefore, the modified method can be applied on the accurate estimation of SOCD in discontinuous soil areas such as Karst regions.  相似文献   

6.
Erosion agents and patterns profoundly affect hillslope soil loss characteristics. However, few attempts have been made to analyze the effects of rainfall and inflow on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region. The objective of this study was to discuss the erosive agent(rainfall or inflow), hillslope erosion pattern(sheet erosion or rill erosion) and slope gradient effects on runoff and soil losses. Two soil pans(2.0 m long, 0.5 m wide and 0.5 m deep) with 5° and 10° slopes were subjected to rainfall(0 and 70 mm h–1) and inflow(0 and 70 mm h–1) experiments. Three experimental combinations of rainfall intensity(RI) and inflow rate(IR) were tested using the same water supply of 70 mm by controllingthe run time. A flat soil surface and a soil bed with a straight initial rill were prepared manually, and represented hillslopes dominated by sheet erosion and rill erosion, respectively. The results showed that soil losses had greater differences among treatments than total runoff. Soil losses decreased in the order of RI70+IR70 RI70+IR0 RI0+IR70. Additionally, soil losses for hillslopes dominated by rill erosion were 1.7-2.2 times greater at 5° and 2.5-6.9 times greater at 10° than those for hillslopes dominated by sheet erosion. The loss of 0.25 mm soil particles and aggregates varying from 47.72%-99.60% of the total soil loss played a dominant role in the sediment. Compared with sheet erosion hillslopes, rill erosion hillslopes selectively transported more microaggregates under a relatively stable rill development stage, but rills transported increasinglymore macroaggregates under an active rill development stage. In conclusion, eliminating raindrop impact on relatively gentle hillslopes and preventing rill development on relatively steep hillslopes would be useful measures to decrease soil erosion and soil degradation in the Mollisol region of northeastern China.  相似文献   

7.
Recently, a phylogenetic diversity and community structure analysis as complementary to species-centric approaches in biodiversity studies provides new insights into the processes of community assembly. In this study, we analyzed species and phylogenetic diversity and community structures for woody and herbaceous plants along two elevational transects on Mt. Baekhwa, South Korea. The species richness and phylogenetic diversity of woody plants showed monotonic declining patterns with increasing elevation along all transects, whereas herbaceous plants showed different patterns, such as no relationship and a reversed unimodal pattern, between the study transects. The main drivers of these patterns were climate and habitat variables for woody and herbaceous plants, respectively. In addition, the phylogenetic community structure primarily showed phylogenetic clustering regulated by deterministic processes, especially environmental filtering, such as climate or habitat factors, along the two transects, although herbaceous plants along a transect depicted phylogenetic randomness as a result of a neutral process. Our findings suggest that deterministic and neutral processes may simultaneously control the community structures along small-scale elevational gradients such as local transects, although the deterministic process may be the predominant type.  相似文献   

8.
The ground penetrating radar( GPR) detection data is a wide band signal,always disturbed by some noise,such as ambient random noise and multiple reflection waves. The noise affects the target identification of underground medium seriously. A method based on principal component analysis( PCA) was proposed to extract the target signal and remove the uncorrelated noise. According to the correlation of signal,the authors get the eigenvalues and corresponding eigenvectors by decomposing the covariance matrix of GPR data and make linear transformation for the GPR data to get the principal components( PCs). The lower-order PCs stand for the strong correlated target signals of the raw data,and the higher-order ones present the uncorrelated noise.Thus the authors can extract the target signal and filter uncorrelated noise effectively by the PCA. This method was demonstrated on real ultra-wideband through-wall radar data and simulated GPR data. Both of the results show that the PCA method can effectively extract the GPR target signal and remove the uncorrelated noise.  相似文献   

9.
基于含油污水管道内输送液体温度高、无压和检测区域面层为硬化混凝土的特点,对某厂区含油污水铸铁管道地下渗漏问题,利用探地雷达方法进行了探测.分析表明,污染物在地层中的扩散形态、污染物与孔隙水的导电性和综合介电常数是影响探测结果的主要因素,而这些因素又受到土层孔隙度、饱和度和污染物与孔隙水的相互作用影响,从而改变了土壤污染...  相似文献   

10.
Re-vegetation plays a fundamental role for erosion control and plant recovery in lands affected by gully erosion. Bioengineered practices facilitate the gullies rehabilitation. Objectives of the research were: 1) Identify taxonomically the pioneer vegetation on each gully section; 2) Characterize vegetation distribution preferences and 3) Assess structural/functional traits to recognize erosion control key species. Bioengineering was applied in a watershed belonging to Sierra Madre del Sur, at Oaxaca, Mexico, on eight gullies, with local support and minimal investment. "La Mixteca" is a poor ecological and socio-economic region, comparable to other regions of the world. The Initial Floristic Composition(IFC) inventory is the baseline of the successional process. The transect method was used to determine the colonization of species. Cover abundance of registered species was estimated using the semi-quantitative scale of Braun-Blanquet. This procedure was repeated in five different positions(floor, hillslopes and tops), in the cross section of the gully. Throughcorrespondence analysis and clustering, the distribution of species was analyzed. Adequate responses were obtained in soil retention(quantity) and plant cover(existence and diversity); as measurable indicators of the bioengeneering works efficiency. Occupation of soil by native species from the Tropical Deciduous Forest was favored using live barriers. We detected species guilds with spatial distribution preferences in the gullies cross section. Plant cover characterization includes: native colonizer species, herbaceous, shrubby and trees of the forest community bordering the gully area, with cover abundance and structural/functional traits, useful to protect degraded areas. This spatial occupation process of plants responds to a secondary succession in gullies, where the proposed IFC model is correctly represented through bioengineering. Natural establishment of plants was successful by traits of species such as extensive root system and sexual/vegetative reproduction.  相似文献   

11.
The authors use the common offset ground penetrating radar(GPR) data inversion based on ray theory to estimate interval velocity and to obtain the relative permittivity. In the ray-tracing based inversion, the input data are the offset distance between antennas, the velocity of the first layer, the pick-up amplitude and re-ference amplitude of each reflection layer. The thickness and velocity of each layer are calculated by this recursive method. Firstly, the horizontal homogeneous layered medium model is established, and the ideal inversion results are obtained. Subsequently, Monte Carlo method is used to establish a randomly undulating homogeneous layered medium model. The common offset GPR data for the built geological model is then simulated by finite-difference time-domain(FDTD). It proved that this ray-tracing based inversion method is feasible for the horizontal layered geological model, even the layered geological model with random undulation. Undulation, represented by RMS height and CL(correlation length), influences the inversion results. Finally, a more complex geological model--pinch-out model was established. In the pinch-out model, the pinch-out interface can be clearly identified, though there is a false anomaly, which will not significantly affect the identification of the underground medium structure.  相似文献   

12.
Rock fragments have major effect on soil macropores and water movement. However, the characteristics of rock fragments and their relationship with macropore characteristics remain elusive in forest stony soils in northern mountainous area of China. The objectives of this study are to (1) use Industrial Computed Tomography (CT) scanning to quantitatively analyze rock fragment characteristics in intact soil columns in different forest lands and (2) identify the relationship between characteristics of rock fragments and that of the macropores. Intact soil columns that were 100 mm in diameter and 300 mm long were randomly taken from six local forest stony soils in Wuzuolou Forest Station in Miyun, Beijing. Industrial CT was used to scan all soil column samples, and then the scanned images were utilized to obtain the three-dimensional (3D) images of rock fragments and macropore structures. Next, the parameters of the rock fragments and macropore structure were measured, including the volume, diameter, surface area, and number of rock fragments, as well as the volume, diameter, surface area, length, angle, tortuosity and number of macropores. The results showed that no significant difference was found in soil rock fragments content in the 10-30 cm layer between mixed forest and pure forest, but in the 0-10 cm soil layer, the rock fragments in mixed forest were significantly less than in pure forest. The number density of macropores has significant negative correlation with the number of rock fragments in the 0-10 cm soil layer, whereas this correlation is not significant in 10-20 cm and 20-30 cm soil layers. The volume density of macropore was not correlated with the volume density of rock fragments, and there is no correlation between the density of macropore surface area and the density of rock fragment surface area. Industrial CT scanning combined with image processing technology can provide a better way to explore 3D distribution of rock fragments in soil. The content of rock fragments in soil is mainly determined by parent rocks. The surface soil (0-10 cm) of forest contains fewer rock fragments and more macropores, which may be caused by bioturbation, root systems, gravitational settling and faunal undermining.  相似文献   

13.
我国南方喀斯特地区岩石裸露率高、土层浅薄且分布不均,这种特殊的岩土组构如何影响水文过程对于准确估算岩溶碳通量具有重要意义。水化学径流法是计算流域尺度岩溶碳通量的常用方法,其中流域面积和流量作为2个重要参数在喀斯特地区往往难以准确获取。在普定喀斯特生态系统观测研究站设计了一组岩土比(1:1和4:1)和一组土层厚度(5,20,100 cm)共计5种岩土组构的模拟试验场。通过一个完整水文年的流量和水化学监测,定量研究了岩石裸露率和土层厚度对水文过程以及岩溶碳通量的影响。研究结果表明,5个模拟试验场岩溶碳通量平均值为(17±3) gC/m2/a,受渗漏量控制,雨季(5-10月)约占95%;岩石裸露率(2组岩土组构之间)对渗漏量的影响可达14%,且随着岩石裸露率增加,入渗系数也相应增加;土层厚度对渗漏量的影响仅在1%~2%之间。此外,对8个野外流域观测数据的分析发现,入渗系数与岩溶碳通量的相关性最为显著,说明入渗系数是喀斯特地区不同岩土组构地质背景影响和控制岩溶碳通量的主要因素,同时这种影响可能随降雨量变化而变化,即入渗系数并非常数。   相似文献   

14.
It is important to know the shape and distribution of sandstone bodies in the subsurface when forma-tion and migration of a dune model are determined.The information plays a significant role in identification of the continental oil and gas accumulation.In this study,the combination of ground penetrating radar (GPR) and electrical resistivity tomography method (ERT)is used in mapping the distribution of sandstone bodies in Yanchang Formation.Six GPR profiles and seven ERT profiles are used to analysis.GPR data show clear re-flections from the top interface of sandstones.ERT data show a continuous high resistivity anomaly correspon-ding to the sandstone body.Combined the reconstructed 3D images by GPR and ERT,the spatial distribution of sandstone bodies is described.  相似文献   

15.
A colluvial landslide in a debris flow valley is a typical phenomena and is easily influenced by rainfall. The direct destructiveness of this kind of landslide is small, however, if failure occurs the resulting blocking of the channel may lead to a series of magnified secondary hazards. For this reason it is important to investigate the potential response of this type of landslide to rainfall. In the present paper, the Goulingping landslide, one of the colluvial landslides in the Goulingping valley in the middle of the Bailong River catchment in Gansu Province, China, was chosen for the study. Electrical Resistivity Tomography (ERT), Terrestrial Laser Scanning (TLS), together with traditional monitoring methods, were used to monitor changes in water content and the deformation of the landslide caused by rainfall. ERT was used to detect changes in soil water content induced by rainfall. The most significant findings were as follows:(1) the water content in the centralupper part (0~41 m) of the landslide was greater than in the central-front part (41~84 m) and (2) there was a relatively high resistivity zone at depth within the sliding zone. The deformation characteristics at the surface of the landslide were monitored by TLS and the results revealed that rainstorms caused three types of deformation and failure: (1) gully erosion at the slope surface; (2) shallow sliding failure; (3) and slope foot erosion. Subsequent monitoring of continuous changes in pore-water pressure, soil pressure and displacement (using traditional methods) indicated that long duration light rainfall (average 2.22 mm/d) caused the entire landslide to enter a state of creeping deformation at the beginning of the rainy season. Shear-induced dilation occurred for the fast sliding (30.09 mm/d) during the critical failure sub-phase (EF). Pore-water pressure in the sliding zone was affected by rainfall. In addition, the sliding L1 parts of the landslide exerted a discontinuous pressure on the L2 part. Through the monitoring and analysis, we conclude that this kind of landslide may have large deformation at the beginning and the late of the rainy season.  相似文献   

16.
Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable.  相似文献   

17.
The distribution and variations of permafrost in the Xidatan region, the northern permafrost boundary of the Qinghai-Tibet Plateau, were examined and analyzed using ground penetrating radar(GPR), borehole drilling, and thermal monitoring data. Results from GPR profiles together with borehole verification indicate that the lowest elevation limit of permafrost occurrence is 4369 m above sea level in 2012. Compared to previous studies, the maximal rise of permafrost limit is 28 m from 1975 to 2012. The total area of permafrost in the study region has been decreased by 13.8%. One of the two previously existed permafrost islands has disappeared and second one has reduced by 76% in area during the past ~40 years. In addition, the ground temperature in the Xidatan region has increased from 2012 to 2016, with a mean warming rate of ~0.004℃ a~(-1) and ~0.003℃ a~(-1) at the depths of 6 and 15 m, respectively. The rising of permafrost limit in the Xidatan region is mainly due to globalwarming. However, some non-climatic factors such as hydrologic processes and anthropic disturbances have also induced permafrost degradation. If the air temperature continues to increase, the northern permafrost boundary in the Qinghai-Tibet Plateau may continue rising in the future.  相似文献   

18.
近年来,探地雷达被越来越多地应用于考古探查中。由于反演多解性问题的存在,雷达图像上的异常既可能是考古目标引起的,也可能是由于地下环境介质的不连续性引起的,所以探究不同类型的考古遗存在探地雷达图像上的典型异常响应,有助于准确识别雷达图像上的“真”异常,剔除一些“假”异常。首先,本文基于西北干旱-半干旱区文物埋藏环境,在河北省怀来县遥感综合试验站试验区设计实施了地下目标体探地雷达探测实验,分析了不同材质的小尺度目标体及夯土结构在探地雷达图像上的响应特征;然后,进一步将探地雷达应用于悬泉置遗址地下城墙基址的探测,对城墙在雷达图像上的响应特征进行了分析。实践表明,探地雷达技术在埋藏浅、小尺度、物性差异不大的考古探查中具有很好的效果,得到并解释了点状、线状、面状等不同考古目标体在探地雷达图像上的响应规律。  相似文献   

19.
Coastal wetlands play an important role in the global carbon cycle.Large quantities of sediment deposited in the Changjiang(Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands,the expansion of saltmarsh vegetation,and carbon sequestration.In this study,using the Chongming Dongtan Wetland in the Changjiang estuary as the study area,the spatial and temporal distribution of soil organic carbon(SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013.There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area,and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area.More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat.The total organic carbon(TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter;in the below-ground biomass,they gradually increased from spring to winter.The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P.australis and Spartina altemiflora marshes,but were lower in the below-ground biomass in S.mariqueter marsh.Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter.The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order:P.australis marsh S.alterniflora marsh S.mariqueter marsh bare mudflat.The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect.These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.  相似文献   

20.
The Badain Jaran Desert,located in the Alxa Plateau,Northwest China,features mega-dunes and a unique dune-lake alternation landscape.This paper presented the aeolian sediment structures of three representative dunes in the Badain Jaran Desert using ground-penetrating radar (GPR).We processed and analyzed the GPR data and investigated the feasibility of using integrated GPR and sedimentological data to reconstruct dunes structure,sedimentary environment and geomorphological evolution.The results show that the internal structures of star dune and transverse dune represent various stages of mega-dune evolution: the main deposition processes of mega-dune are similar to those of transverse dunes but have a more complicated mechanism of sand transport and deposition because of the superimposition of dunes;the upper section of the mega-dune has a structure similar to that of star dune,with vertical aggradations on top.Diffraction hyperbolae in the GPR profile indicates that the presence of ancient dunes characterized by calcareous cementation layers is involved in the maintenance of mega-dunes,and water levels,shown by continuous,sub-horizontal GPR reflections,are supposed to be closely related to mega-dunes and the interdune lakes.Outcrop of wet sand and horizontal stratifications on the GPR image indicate moisture potentials with different levels inside mega-dunes.The multiplex geomorphology in the Badain Jaran Desert is the result of global climatic undulation,the unique geographical location,the geological structural features,etc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号