首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three methods for identification cyclones in extratropical latitudes of the Northern Hemisphere (NH) (20°–80° L) are compared based on reanalysis data (1948–2007) for the fields of the sea level pressure (SLP). Different characteristics of extratropical cyclones, namely, their number, intensity, size, and lifetime, are analyzed. The effect of orographic effects for the identification of cyclones and their trajectories is evaluated. The characteristics of extratropical cyclones are compared based on different reanalysis data (National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), ERA-40, and ERA-INTERIM) with different spatial resolutions.  相似文献   

2.
Quantitative estimates of the sensitivity of the number and size of extratropical cyclones in the Northern Hemisphere to changes in the surface temperature are obtained with the use of NCEP/NCAR reanalysis data over a 60-year period and are compared with estimates on the basis of a relatively simple model of the cyclonic and anticyclonic activities in the atmosphere of extratropical latitudes associated with characteristics of atmospheric temperature stratification (MMPKh model). The model estimates are also obtained for a dry and moist atmosphere. With the use of the reanalysis data, extratropical latitudes are, on the whole, characterized by a general decrease in the number of cyclones and the density of their packing in extratropical latitudes as the surface temperature increases. However, in the MMPKh model for moist atmosphere, estimates of the parameter of sensitivity of the number of cyclones at midlatitudes and at extratropical latitudes in the Northern Hemisphere as a whole are close to those based on the reanalysis data. The influences of the meridional gradient of the surface temperature and the vertical temperature gradient in the troposphere on changes in the number and size of extratropical cyclones are estimated from the reanalysis data and model calculations. It is noted that the most significant changes in annual mean variations in the number and size of extratropical cyclones are associated with the vertical temperature gradient in the troposphere. In this case, an increase in the vertical temperature gradient in the troposphere decreases the size of cyclones. The relative influences of the vertical and meridional temperature gradients are different for different latitudinal zones.  相似文献   

3.
中国近海温带气旋的时空变化特征   总被引:1,自引:1,他引:0  
秦听  魏立新 《海洋学报》2015,37(1):43-52
基于1979-2012年共34年的ECMWF逐日4次平均海平面气压的再分析资料,采用英国雷丁大学气旋客观追踪算法,对出现在我国近海的温带气旋(气旋生命史1d以上,移动距离大于500km)的时空分布特征进行统计分析。结论包括以下几点:(1)1979-2012年进入中国近海的温带气旋平均每年45个,气旋数量呈现春夏多而秋冬少的特点。20世纪90年代初至今,气旋数量呈增加趋势,其中北部海区气旋数量增加达到显著水平,东部海区气旋数量表现为不显著减少,故认为影响中国近海的气旋路径有北移的趋势。(2)进入我国近海的温带气旋主要有4个生成源地,按比例由高到低分别是江淮气旋(38.9%),东海气旋(25.2%),黄河气旋(24.3%)以及蒙古气旋(11.6%)。气旋入海后,当大气海洋条件适合时,可以爆发性增长,气旋爆发性增长的主要区域在朝鲜半岛及以东洋面以及日本以东洋面,在我国近海气旋爆发的比例较小。(3)气旋生命史主要为1~7d,但生命史为1~4d的气旋比例最大,平均占气旋总数的52%,其中夏季长生命史气旋(大于10d)的比例最大,为8%,冬季最少,接近3%。冬季气旋最强,气压分布区间大;夏季弱气旋多,中心气压分布集中。  相似文献   

4.
秦听  魏立新 《海洋学报》2018,40(11):96-104
本文采用气旋自动识别与追踪算法,基于欧洲中期天气预报中心ERA-Interim平均海平面气压场,建立1979-2015年共37年7-10月北极西北航道东西两个区域的气旋数据。数据包括气旋中心经纬度以及中心最低气压值。基于这套数据,分析了北极7-10月西北航道气旋数量特征、空间密度分布、强度特征、加深以及爆发性气旋的活动情况。西北航道东西两段的气旋个数存在显著的差异,东段气旋个数是西段区域的2~2.5倍,并且两段个数变化趋势不一致,西段的气旋个数趋势呈不显著的减少,东段的个数呈不显著上升趋势。西北航道气旋强度偏弱,中心最低气压达980 hPa的气旋仅占不到总数的5%。最低中心气压集中分布在990~1 000 hPa之间。1979-2015年以来,东段的气旋强度趋势增强,西段气旋在2002年以前也是显著的增强,2002年以后强度减弱。气旋的生命史集中在7 d以内,东段1 d以内的气旋个数明显偏多。西段气旋高密度区域主要分布在74°N以北的波弗特海北部,东段主要分布在巴芬湾的东北侧和巴芬岛的东南侧,近几年来其主要密度分布区域东西两段存在南移以及略微变化。西北航道内爆发性气旋的增长位置集中在70°N的沿岸附近,尤其是加拿大北部以及格陵兰西海岸附近。大西洋震荡指数与东段气旋的个数有较好的正相关。  相似文献   

5.
本文利用欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)提供的0.125(°)×0.125(°)的ERA-Interim再分析资料、美国国家航空航天局(National Aeronautics and Space Administration,NASA)提供的MODIS(Moderate Resolution Imaging Spectroradiometer)可见光云图、气象卫星合作研究所(Cooperative Institute for Meteorological Satellite Studies,CIMSS)提供的GOES-EAST红外卫星云图等资料以及WRF(Weather Research and Forecasting)数值模式的模拟结果,对2003年3月北大西洋上一个爆发性气旋B“吞并”另一个气旋A后快速发展机制进行了分析。气旋A和B均生成于美国东部,气旋A于2003年3月5日06 UTC生成,气旋B于6日00 UTC生成,且比气旋A向东北方向移动得更快,7日18 UTC达到最大加深率3.27 hPa·h-1。在北大西洋中部地区,从8日00 UTC开始,气旋B吞并气旋A后形成气旋C,8日12 UTC气旋C中心气压达到最低值938.3 hPa。高空急流、低空水汽输送和潜热释放为气旋A和气旋B的快速发展提供了有利的环流背景场。气旋B吞并气旋A的过程经历三个阶段:前期阶段、吞并阶段、完成阶段。利用WRF模式模拟结果的分析表明,气旋A和B之间建立水汽输运通道,水汽从气旋A向气旋B输送。气旋B吞并气旋A后形成气旋C快速发展的主要原因是暖平流的作用。  相似文献   

6.
2023年秋季(9—11月)北半球极涡为单极型分布,中高纬度地区呈5波型,欧亚大陆西风环流较为平直,西风带槽脊较弱。我国近海共出现16次8级以上大风过程,其中热带气旋大风过程3次,热带气旋与冷空气共同影响的大风过程3次,冷空气和温带气旋共同影响的大风过程3次,冷空气大风过程7次。西北太平洋和南海共生成4个热带气旋,热带气旋活动较常年偏少,全球其他海域生成热带气旋22个。近海出现2.0 m以上大浪过程17次,大浪日数占秋季总日数约71%。近海海面温度较常年平均偏高。  相似文献   

7.
2020年春季(3—5月)的大气环流特征为:北半球极涡为单极型分布,极涡较常年平均值偏强,中高纬度西风带呈现为3波型。3月,影响我国的冷空气总体多而不强,对北方海域影响较大。4月,我国近海海域上空为经向型环流,有利于冷空气南下。5月,影响我国近海的冷空气较弱,以温带气旋影响为主。我国近海出现了13次8级以上大风过程,其中冷空气大风过程4次,冷空气和温带气旋共同影响的大风过程5次,温带气旋影响的大风过程4次。春季共有7次海雾过程,3月3次,4月1次,5月3次。近海浪高在2 m以上的海浪过程有10次,大浪日数偏少。西北太平洋和南海共生成1个台风。我国近海的海面温度整体呈上升趋势,且北方海域升温幅度大于南方海域。  相似文献   

8.
2021年夏季(6—8月)大气环流特征为:北半球极涡呈单极型分布,主体位于北冰洋上空偏向西半球,强度较常年偏强;东亚地区以纬向环流为主,副热带高压较常年平均略偏西偏南。6月,北部海域温度较低,黄渤海海雾天气多发。7月,西南季风推进,热带气旋活跃。8月,副热带高压增强西伸,热带气旋活动频次偏少。夏季共有7次海雾过程,其中6月有4次,7月有3次。我国近海出现了9次8级以上大风过程,其中热带气旋大风过程6次,温带气旋入海影响的大风过程3次。浪高在2 m以上的海浪过程有10次,2 m以上大浪的天数共计38 d。我国北部及东部海域升温明显,从北到南的海面温度梯度减小。西北太平洋和南海有9个台风活动,其中台风“烟花”造成近海一次范围广、时间长、风力大的大风过程。  相似文献   

9.
2020年夏季(6—8月),北半球极涡呈现明显的单极型分布,极涡主体位于北极圈内,中心偏向东半球,中高纬环流呈现4波型分布。6—7月,西太平洋副热带高压较常年平均偏强,且位置偏西偏南,不利于热带气旋活动。2020年夏季共有8个热带气旋在西北太平洋和南海生成,其中7月没有热带气旋生成。除西北太平洋和南海之外,其他热带洋面另有20个热带气旋生成,其中北大西洋11个,东太平洋8个,北印度洋1个。受偏南暖湿气流的影响,我国北方海域多海雾天气。同时受入海气旋活动影响,多海上大风过程。夏季近海海域共出现了7次比较明显的海雾过程,其中6月3次,7月1次,8月3次。大风过程出现了10次,2次由热带气旋影响,7次与入海气旋活动有关。发生2 m以上的大浪过程12次,6—8月分别出现了4次、5次和3次。  相似文献   

10.
2021年秋季(9—11月)北半球大气环流特征为:极涡整体呈单极型,中高纬环流呈5波型分布,欧亚地区西风带环流形势季节内调整大,副热带高压(以下简称“副高”)偏强,西伸明显。秋季我国近海大风过程主要由冷空气、温带气旋和热带气旋影响造成。在12次8级以上大风过程中,冷空气影响8次,温带气旋影响6次,台风影响4次。西北太平洋和南海共生成9个台风,其中5个台风进入我国近海,在东西带状分布的副高影响下,近海台风主要活跃于南部海域;全球其他海域共命名热带气旋18个。我国出现2 m以上大浪过程的日数为74 d,约占总日数的81%,大浪过程与大风过程联系密切。秋季我国近海海面温度整体偏高,随着冷空气的逐渐活跃,北部海区和沿岸海域海面降温迅速,沿岸海面温度梯度加大,我国近海海域中,海面温度梯度最大的区域出现在东海。  相似文献   

11.
Possible changes in the climate characteristics of the Northern Hemisphere in the 21st century are estimated using a climate model (developed at the Obukhov Institute of Atmospheric Physics (OIAP), Russian Academy of Sciences) under different scenarios of variations in the atmospheric contents of greenhouse gases and aerosols, including those formed at the OIAP on the basis of SRES emission scenarios (group I) and scenarios (group II) developed at the Moscow Power Engineering Institute (MPEI). Over the 21st century, the global annual mean warming at the surface amounts to 1.2?C2.6°C under scenarios I and 0.9?C1.2°C under scenarios II. For all scenarios II, starting from the 2060s, a decrease is observed in the rate of increase in the global mean annual near-surface air temperature. The spatial structures of variations in the mean annual near-surface air temperature in the 21st century, which have been obtained for both groups of scenarios (with smaller absolute values for scenarios II), are similar. Under scenarios I, within the extratropical latitudes, the mean annual surface air temperature increases by 3?C7°C in North America and by 3?C5°C in Eurasia in the 21st century. Under scenarios II, the near-surface air temperature increases by 2?C4°C in North America and by 2?C3°C in Eurasia. An increase in the total amount of precipitation by the end of the 21st century is noted for both groups of scenarios; the most significant increase in the precipitation rate is noted for the land of the Northern Hemisphere. By the late 21st century, the total area of the near-surface permafrost soils of the land of the Northern Hemisphere decreases to 3.9?C9.5 106 km2 for scenarios I and 9.7?C11.0 × 106 km2 for scenarios II. The decrease in the area of near-surface permafrost soils by 2091?C2100 (as compared to 2001?C2010) amounts to approximately 65% for scenarios I and 40% for scenarios II. By the end of the 21st century, in regions of eastern Siberia, in which near-surface permafrost soils are preserved, the characteristic depths of seasonal thawing amount to 0.5?C2.5 m for scenarios I and 1?C2 m for scenarios II. In western Siberia, the depth of seasonal thawing amounts to 1?C2 m under both scenarios I and II.  相似文献   

12.
赤道东太平洋海温对东亚~西北太平洋温带气旋的影响   总被引:1,自引:0,他引:1  
本文分析了东亚~西北太平洋较强温带气旋的气修特征及其与赤道东太平洋海温的关系。得出,厄尔尼诺年或厄尔尼诺持续年,较强温带气旋偏多的对应关系占找优势。但当副热带高压偏强时,则较强温带气旋偏少。  相似文献   

13.
2020年秋季(9-11月)大气环流特征表现为,北半球极涡呈单极型分布,中高纬环流呈4波型.9-11月,欧亚大陆中高纬环流经向度不断加大,冷空气势力增强.西太平洋副热带高压较历史平均偏强,热带气旋活动频繁.我国近海出现了19次8级以上大风过程,其中冷空气大风过程6次,台风大风过程4次,入海气旋大风过程1次,冷空气与热带...  相似文献   

14.
2021年春季(3—5月)的大气环流特征为:北半球极涡为偶极型分布,极涡较常年平均值偏强,中高纬度西风带呈现4波型。3月,南下冷空气活动偏弱,月内海雾过程频发。4月,北部海域受高压影响,低层形势场稳定,冷空气活动减弱。5月,我国近海受温带气旋影响出现大风天气。春季我国近海出现了5次8级以上大风过程,其中冷空气大风过程2次,冷空气和温带气旋共同影响的大风过程1次,温带气旋影响的大风过程2次。春季共有8次海雾过程,3月3次,4月2次,5月3次。近海浪高在2 m以上的海浪过程有8次,大浪日数偏少。西北太平洋和南海共生成2个台风。我国近海的海面温度整体呈上升趋势,东部和南部海域升温明显,南部和北部海域海面温度梯度增加。  相似文献   

15.
2019年秋季(9—11月)大气环流特征为:北半球极涡呈绕极型分布,中高纬度环流呈4波型。随月份增加,欧亚大陆中高纬度环流的经向度不断加大,冷空气势力增强,但仍较历史平均偏弱。西太平洋副热带高压较历史平均偏强,热带气旋活动频繁。我国近海出现了17 次8级以上大风过程,其中冷空气大风过程有9次,热带气旋大风过程4次,冷空气与热带气旋共同影响的大风天气过程3次,冷空气和温带气旋共同影响的大风过程1次。西北太平洋和南海共生成16个热带气旋,全球其他海域生成热带气旋 27个。我国近海浪高在2 m以上的海浪过程有9次。秋季,我国近海海域海面温度逐月下降,北部海域的降温幅度明显大于南部海域。  相似文献   

16.
热带气旋引起的风暴潮-海浪灾害成灾频率高、致灾强度大,对我国沿海地区造成的人员和经济损失惨重。预评估阶段需要在灾前对研究区可能造成的损失等进行快速的综合判定。从历史热带气旋中检索出与目标热带气旋位置及各种致灾因子强度相似的热带气旋是快速、准确地预评估风暴潮-海浪灾害的重要方法。面向风暴潮-海浪灾害预评估,提出了一种基于多致灾因子的相似热带气旋检索方法。用于相似检索的致灾因子数据包括:从中国气象局西北太平洋热带气旋最佳路径数据集中提取并经处理得到的1949~2013年影响湛江市的112场热带气旋的路径中心点位置、中心气压、最大风速、最大风速半径及移动速度数据,112场热带气旋的模拟风场、风暴潮及海浪数据。首先,利用相似离度方法对热带气旋进行路径相似性检索;其次,利用最优相似系数方法计算中心气压、最大风速半径、最大风速、移动速度、风场、风暴潮及海浪强度指标的相似系数进行一次检索;然后,根据风场、风暴潮及海浪模拟数据的获取情况,分别基于路径-强度及风场-风暴潮-海浪综合相似性指标进行二次检索;最终给出历史热带气旋的综合相似排序。以2013年尤特热带气旋为例,利用上述方法检索了与其最为相似的5场历史热带气旋。该方法综合考虑了热带气旋路径及多种致灾因子的相似,兼顾了检索的速度及质量,是进行快速、准确的风暴潮-海浪灾害预评估的重要基础。  相似文献   

17.
采用1979—2019年热带气旋最佳路径资料,分析影响中国沿海的热带气旋的时空演变特征,并结合Ni?o3.4指数、海表温度和海洋上层热容量资料,对热带气旋与ENSO变化关系进行初步探讨。结果表明,近40年来影响中国沿海的热带气旋经历了1990年代减弱,2000年代增强的变化过程,且在2000年以后呈现显著向岸迁移趋势。影响中国沿海的热带气旋与表征ENSO的Ni?o3.4指数的相关关系在2000年发生突变,具体表现为ACE与Ni?o3.4指数在2000年前呈显著正相关,2000年后二者相关性明显下降。通过将ACE分解成平均强度ACE1、持续时间ACE2和频数ACE3这三个分量,发现2000年前Ni?o3.4指数与平均强度ACE1呈显著正相关,但2000年后Ni?o3.4指数与ACE1相关关系减弱,这可能是导致ACE与Ni?o3.4指数的相关关系在2000年左右发生突变的主要原因。持续时间ACE2与Ni?o3.4指数一直保持显著正相关,频数ACE3<...  相似文献   

18.
基于辽东东探区1966—2007年出现的76次温带气旋减水过程,对10个工程地点抽取了10个统计样本。考虑每年温带气旋出现频次的影响,使用泊松最大熵分布对其进行减水的长期统计分析。得到100年一遇和50年一遇最大幅度的减水重现值分别为304和286cm。由于受地形的影响,北部海域的减水幅度大于南部区域。  相似文献   

19.
南大洋气旋气候与变化特征   总被引:2,自引:1,他引:1  
A new climatology of cyclones in the Southern Ocean is generated by applying an automated cyclone detection and tracking algorithm(developed by Hodges at the Reading University) for an improved and relatively highresolution European Centre for Medium-Range Weather Forecasts atmospheric reanalysis during 1979–2013.A validation shows that identified cyclone tracks are in good agreement with a available analyzed cyclone product.The climatological characteristics of the Southern Ocean cyclones are then analyzed,including track,number,density,intensity,deepening rate and explosive events.An analysis shows that the number of cyclones in the Southern Ocean has increased for 1979–2013,but only statistically significant in summer.Coincident with the circumpolar trough,a single high-density band of cyclones is observed in 55°–67°S,and cyclone density has generally increased in north of this band for 1979–2013,except summer.The intensity of up to 70% cyclones in the Southern Ocean is less than 980 h Pa,and only a few cyclones with pressure less than 920 h Pa are detected for1979–2013.Further analysis shows that a high frequency of explosive cyclones is located in the band of 45°–55°S,and the Atlantic Ocean sector has much higher frequent occurrence of the explosive cyclones than that in the Pacific Ocean sector.Additionally,the relationship between cyclone activities in the Southern Ocean and the Southern Annular Mode is discussed.  相似文献   

20.
利用印度气象局(India Meteorological Department,IMD)、国际气候管理最佳路径档案库(International Best Track Archive for Climate Stewardship,IBTrACS)提供的1982—2020年阿拉伯海热带气旋路径资料,美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)再分析资料,对近39 a阿拉伯海热带气旋源地和路径特征、活跃区域、频数及气旋累积能量(accumulated cyclone energy,ACE)指数的季节特征和年际变化特征进行分析,并结合环境因素,说明其物理成因。结果表明:阿拉伯海热带气旋多发于10°~25°N,65°~75°E海域,5—6月、9—12月发生频数较高且强度较强,1—4月、7—8月发生频数较低且气旋近中心最大风速均小于35 kn;频数的季节变化主要受控于垂直风切变要素;阿拉伯海热带气旋发生频数和ACE近年有上升趋势,年际变化主要受控于海面温度(sea surface temperature,SST)和850 hPa相对湿度要素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号