首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of the bump and the black-body cutoff in the cosmic-ray (CR) spectrum arising from the -meson photoproduction reaction in collisions of UHE CR protons with the microwave background radiation (MBR) is studied. A kinetic equation which describes CR proton propagation in the MBR with account of the catastrophic nature of the -meson photoproduction process is derived. The equilibrium CR proton spectrum obtained from the solution of the stationary kinetic equation is in general agreement with the spectrum obtained under assumption of the continuous energy loss approximation. However, the spectra from point sources noticeably differ from those obtained in the continuous loss approximation. Both, the equilibrium and the point source spectra are modified when taking into account the possible deviation of the MBR spectrum from the Planckian one in the Wien region. Thus, for the recently measured MBR spectrum, which reveals an essential excess in the submillimeter region, the black-body cutoff and the preceding bump shift towards lower energies.Deceased, August 13, 1989.  相似文献   

2.
The anisotropy of high-energy (∼10 GeV and above) cosmic rays is investigated. A simplified model of the heliosphere constructed as a basis for the theory of their long-period variations is investigated for applicability to describing the cosmic-ray anisotropy. This model has been found to need a modification. The necessary changes of the model do not affect the conclusions on the 22-year variations reached on its basis but make it possible to construct a theory of cosmic-ray anisotropy. The theoretical results on the anisotropy are compared with its long-term observations in a wide energy range performed in Yakutsk.  相似文献   

3.
We explore the possibility that the diffuse gamma-ray background radiation (GBR) at high Galactic latitudes could be dominated by inverse Compton scattering of cosmic ray (CR) electrons on the cosmic microwave background radiation and on starlight from our own galaxy. Assuming that the mechanisms accelerating Galactic CR hadrons and electrons are the same, we derive simple and successful relations between the spectral indices of the GBR above a few MeV and the CR electrons and CR nuclei above a few GeV. We reproduce the observed intensity and angular dependence of the GBR, in directions away from the Galactic disc and centre, without recourse to hypothetical extragalactic sources.  相似文献   

4.
The angular anisotropy of cosmic radio emission at frequencies of 260, 512, 772, and 1028 kHz was studied on the WIND spacecraft when it moved to a distance of ~1.5×106 km from the Earth at the deepest phase of the last solar minimum. The modulation index of the temperature of the spacecraft dipole antenna rotating in the plane of the ecliptic was found to have an indistinct frequency dependence with a maximum of 17% near 500 kHz. This result modifies significantly the conclusions of the only similar experiment on the IMP-6 spacecraft carried out under less favorable observing conditions. Existing ideas about the causes of the radio-background anisotropy in the opacity region of the Galactic gas disk are briefly reviewed.  相似文献   

5.
We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in the GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in the TeV range by synchrotron radiation of ultra-high-energy protons ( 1020 eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.  相似文献   

6.
On the origin of highest energy cosmic rays   总被引:1,自引:0,他引:1  
In this paper we show that the conventional diffusive shock acceleration mechanism for cosmic rays associated with relativistic astrophysical shocks in active galactic nuclei (AGNs) has severe difficulties to explain the highest energy cosmic ray events. We show that protons above around 2 x 1020 eV could have marginally been produced by this mechanism in an AGN or a rich galaxy cluster not further away than around 100 Mpc. However, for the highest energy Fly's Eye and Yakutsk events this is inconsistent with the observed arrival directions. Galactic and intergalactic magnetic fields appear unable to alter the direction of such energetic particles by more than a few degrees. We also discuss some other options for these events associated with relativistic particles including pulsar acceleration of high Z nuclei. At the present stage of knowledge the concept of topological defects left over from the early universe as the source for such events appears to be a promising option. Such sources are discussed and possible tests of this hypothesis are proposed.  相似文献   

7.
An analysis has been made of the fraction of ultra high energy cosmic rays (above 1018 eV) which could be due to processes involved in two possible ‘Models’. The first is the Giant Magnetic Halo Model and the second is the Dark Matter Halo Model. We find that the former, in which heavy nuclei are trapped in a giant halo, fails for energies above about 3 × 1019 eV. For the Dark Matter Halo Model, in which relic particles follow the “conventional” dark matter and whose decays give ultra high energy cosmic rays, the predicted anisotropies are much higher than those observed. The lack of observation of a finite flux from the Andromeda Galaxy means that the conclusion is insensitive to the spatial scale size of the assumed halo distribution. It is concluded that less than 10% of the ultra high energy cosmic rays come from relic particles in the Galactic halo.  相似文献   

8.
On the basis of recent new information on regular and chaotic magnetic fields in coronae of spiral galaxies, we discuss propagation of ultra-high energy cosmic rays of energies exceeding 1017 eV in the galactic corona. It is shown that the expected regular magnetic field is able to confine to the corona protons of energies up to 3×1019 eV. Chaotic magnetic fields of the corona play an important role in dynamics of cosmic-ray protons of energy up to 7×1018 eV.  相似文献   

9.
Burgeret al. (1970) calculated the positron flux from the decay of56Co56Fe from cosmic rays injected from supernovae. The plasma properties of the ejected matter are determined in the present calculation in order to include the ionization loss of the positrons as the matter expands. It is found that using the matter velocity distribution of previous supernova model calculations that roughly 10% of the positrons escape. The average lifetime in the galaxy due to ionization loss is found to be relatively small, 1.5×105 yr, and with the above injection results in ×3, the observed flux. The same matter velocity distribution is subjected to ionization loss in the galaxy and a steady state low energy, 10E200 MeV, differential flux spectrum is found,J(E)E –1.2. This removes the difficulty of the high galactic energy density resulting from a steeper spectrum.  相似文献   

10.
Blazar emission of gamma rays and cosmic ray production of gamma rays in gas-rich clusters have been proposed recently as alternative sources of the high energy extragalactic diffuse gamma ray background radiation. We show that these sources also produce very different high energy extragalactic diffuse neutrino background radiations. An extragalactic neutrino background radiation may be detected by the new generation of large neutrino telescopes under construction and may be used to trace the origin of the extragalactic gamma radiation.  相似文献   

11.
The thermal decoupling during recombination and the endurance of this process can significantly deform the black-body background radiation spectrum even in the absence of heating sources. Observational data contradicts a flat standard universe but agrees with a low-density model and with a flat matter-antimatter symmetric universe. Evidence is presented against the presumption that matter-antimatter annibilation should necessarily produce large distortions.  相似文献   

12.
《New Astronomy Reviews》1999,43(2-4):215-222
We discuss the properties of the cosmic background polarization as predicted by secondary ionization models, and the prospects for the determination of reheating parameters from forthcoming space experiments.  相似文献   

13.
We investigate periodicities in redshift samples corrected for the apparent motion of the solar system relative to the cosmic background radiation. The samples used for the initial study of CBR-related periodicities are composed of data on galaxies with 21 cm profiles of intermediate width taken by Tifft and Tifft and Cocke at the 300-ft telescope at Green Bank. Referred to a coordinate system at rest with respect to the CBR, these data are found to be periodic near the 72 km s–1 period previously associated with redshift quantization. Spectral power methods are used to evaluate the high significance levels found for the association. The significance is verified by searching for periodicities in a large volume of velocity space. The search shows that random occurrences at the specified period occur at a level consistent with the fact that the coincidence with the CBR rest frame is very improbable. It is further shown that a phase shift occurs in the periodicity near 21 cm profile widths of 250 km s–1.Other data confirm the correspondence with the CBR rest frame and the effects of dependence on profile width; namely, 21 cm data by Fisher and Tully and data by Giovanelli and Haynes for the Perseus supercluster. The Fisher-Tully data for moderate to large profile widths confirm the presence of significant periodicities close to 72 km s–1 both below and above profile widths near 250 km s–1 where the phase shift occurs. The Giovanelli and Haynes data extend the analysis to galaxies with very wide 21 cm profiles and confirm the presence of a previously known period near one half of 72 km s–1 as well as the CBR association.  相似文献   

14.
After a brief review of the discovery of extensive air showers, I summarise the remarkable advances made in the decade 1948–1958. During this period many of the techniques of instrumentation and analysis that are used today were introduced. I then discuss current data with emphasis on recent work on the measurement of the mass composition between 1015 and 1017 eV and above 1018 eV, and on the energy spectrum at the highest energies.  相似文献   

15.
Observed events of ultra-high energy cosmic rays may indicate a hard component for the energy spectrum of their flux, which might have origin in the decay of long-lived vortons presumably condensed in the galactic halo. To be consistent with the needed present density, vortons may have been formed during the breaking of an abelian symmetry contained in a large GUT group like E6 and a part of them could have survived the destabilization caused by the electroweak transition.  相似文献   

16.
17.
Propagation of UHE protons through CMB radiation leaves the imprint on energy spectrum in the form of Greisen–Zatsepin–Kuzmin (GZK) cutoff, bump (pile-up protons) and dip. The dip is a feature in energy range 1×1018–4×1019 eV, caused by electron-positron pair production on CMB photons. Calculated for power-law generation spectrum with index γ g =2.7, the shape of the dip is confirmed with high accuracy by data of Akeno—AGASA, HiRes, Yakutsk and Fly’s Eye detectors. The predicted shape of the dip is robust: it is valid for the rectilinear and diffusive propagation, for different discretenesses in the source distribution, for local source overdensity and deficit etc. This property of the dip allows us to use it for energy calibration of the detectors. The energy shift λ for each detector is determined by minimum χ 2 in comparison of observed and calculated dip. After this energy calibration the absolute fluxes, measured by AGASA, HiRes and Yakutsk detectors remarkably coincide in energy region 1×1018–1×1020 eV. Below the characteristic energy E c ≈1×1018 eV the spectrum of the dip flattens for both diffusive and rectilinear propagation, and more steep galactic spectrum becomes dominant at E<E c . The energy of transition E tr<E c approximately coincides with the position of the second knee E 2kn , observed in the cosmic ray spectrum. The dip-induced transition from galactic to extragalactic cosmic rays at the second knee is compared with traditional model of transition at ankle, the feature observed at energy ∼1×1019 eV.   相似文献   

18.
We report the results of 3D simulations of non-diffusive propagation of Ultra High Energy Cosmic Rays (UHECR) (E > 1020 eV) through the intergalactic and extended halo media. We quantify the expected angular and temporal correlations between the events and the sources, and the temporal delay between protons and gamma-ray counterparts with a common origin for both halo and extragalactic origins. It is shown that the proposed UHECR-supergalactic plane source associations require either extremely high values of the halo magnetic field over as much as 100 kpc length scale or a very large correlation length for the IGM, even for the largest possible values of the intergalactic magnetic field. It can be stated that the UHECR seem to point to the sources even more strongly than previously believed. The simulations also show that the calculated time delays between UHE protons and gamma-ray counterparts do not match the claimed GRB-UHECR associations for either cosmological or extended halo distance scales.  相似文献   

19.
20.
We introduce new symmetry-based methods to test for isotropy in cosmic microwave background (CMB) radiation. Each angular multipole is factored into unique products of power eigenvectors, related multipoles and singular values that provide two new rotationally invariant measures mode by mode. The power entropy and directional entropy are new tests of randomness that are independent of the usual CMB power. Simulated Galactic plane contamination is readily identified. The ILC– WMAP data maps show seven axes well aligned with one another and the direction Virgo. Parameter free statistics find 12 independent cases of extraordinary axial alignment, low power entropy, or both having 5 per cent probability or lower in an isotropic distribution. Isotropy of the ILC maps is ruled out to confidence levels of better than 99.9 per cent, whether or not coincidences with other puzzles coming from the Virgo axis are included. Our work shows that anisotropy is not confined to the low l region, but extends over a much larger l range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号