首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary nature of the 13C neutron source is very significant for the studies of the s -process nucleosynthesis. In this paper we present an attempt to fit the element abundances observed in 16 s -rich stars using parametric model of the single neutron exposure. The calculated results indicate that almost all s -elements were made in a single neutron exposure for nine sample stars. Although a large spread of neutron exposure is obtained, the maximum value of the neutron exposure will reach about 7.0 mbarn−1, which is close to the theoretical predictions by the asymptotic giant branch (AGB) model. The calculated result is a significant evidence for the primary nature of the neutron source. Combining the result obtained in this work and the neutron exposure–initial mass relations, a large spread of neutron exposure can be explained by the different initial stellar mass and their time evolution. The possibility that the rotationally induced mixing process can lead to a spread of the neutron exposure in AGB stars is also existent.  相似文献   

2.
We employ spectra of resolution 20–35000 of seven SC stars, four S stars, two Ba stars and two K–M stars to derive abundances of a variety of elements from Sr to Eu relative to iron. Special attention is paid to Rb and Tc, and to the ratio of the heavy s-process species to the light s-process elements. Abundances are derived in LTE, both by using model atmospheres in which the carbon and oxygen abundances are nearly equal and by using curves of growth. Spectrum synthesis is used for critical lines such as the 5924-Å line of Tc and the 7800-Å line of Rb. For most of the heavy-element stars the enhancement of the s-process elements is about a factor of 10. The ratio of the heavy to light s-process species is not far from solar, except for RR Her for which the same ratio is +0.45 dex. For Tc the blending by other lines is severe. While we have probably detected the 5924-Å line, we can only present abundances in the less-than-or-equal-to category. For Rb, whose abundance is sensitive to the 85Rb/87Rb ratio and hence to the neutron density during s-process production, we find a considerable range of abundances, indicating a neutron density from 106 to ≳108 cm−3 for the SC stars. For the four S stars the range is from 107 to ≳108 cm−3. Recent calculations by Gallino et al. show that neutron densities near 107 cm−3 favour the 13C source for neutrons, while densities greater than 108 cm−3 may be associated with neutrons from the 22Ne source.  相似文献   

3.
At redshifts   z abs≲ 2  , quasar absorption-line constraints on space–time variations in the fine-structure constant, α, rely on the comparison of Mg  ii and Fe  ii transition wavelengths. One potentially important uncertainty is the relative abundance of Mg isotopes in the absorbers, which, if different from solar, can cause spurious shifts in the measured wavelengths and, therefore, α. Here we explore chemical evolution models with enhanced populations of intermediate-mass (IM) stars, which, in their asymptotic giant branch phase, are thought to be the dominant factories for heavy Mg isotopes at the low metallicities typical of quasar absorption systems. By design, these models partially explain recent Keck/HIRES evidence for a smaller α in   z abs < 2  absorption clouds than on Earth. However, such models also overproduce N, violating observed abundance trends in high- z abs damped Lyman-α (DLA) systems. Our results do not support the recent claim of Ashenfelter et al. that similar models of IM-enhanced initial mass functions (IMFs) may simultaneously explain the HIRES varying-α data and DLA N abundances. We explore the effect of the IM-enhanced model on Si, Al and P abundances, finding it to be much less pronounced than for N. We also show that the 13C/12C ratio, as measured in absorption systems, could constitute a future diagnostic of non-standard models of the high-redshift IMF.  相似文献   

4.
5.
6.
7.
We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass  (4–7 M)  asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while 'normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.  相似文献   

8.
9.
Using three independent theoretical approaches (CA, HFR + CP, AUTOSTRUCTURE), oscillator strengths have been calculated for a set of Tc  ii transitions of astrophysical interest and the reliability of their absolute scale has been assessed. The examination of the spectra emitted by some Ap stars has allowed the identification of Tc  ii transitions in HD 125248. This Tc  ii detection should however await confirmation from spectral synthesis relying on dedicated model atmospheres. New partition functions are also provided for Tc  i , Tc  ii and Tc  iii for temperatures ranging between 4000 and 13 000 K.  相似文献   

10.
Star‐to‐star variations in abundances of the light elements carbon, nitrogen, oxygen, and sodium have been observed in stars of all evolutionary phases in all Galactic globular clusters that have been thoroughly studied. The data available for studying this phenomenon, and the hypotheses as to its origin, have both co‐evolved with observing technology; once high‐resolution spectra were available even for main‐sequence stars in globular clusters, scenarios involving multiple closely spaced stellar generations enriched by feedback from moderate‐ and high‐mass stars began to gain traction in the literature. This paper briefly reviews the observational history of globular cluster abundance inhomogeneities, discusses the presently favored models of their origin, and considers several aspects of this problem that require further study (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
High-dispersion near-infrared spectra have been taken of seven highly evolved, variable, intermediate-mass (4–6 M) asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud in order to look for C, N and O variations that are expected to arise from third dredge-up and hot-bottom burning. The pulsation of the objects has been modelled, yielding stellar masses, and spectral synthesis calculations have been performed in order to derive abundances from the observed spectra. For two stars, abundances of C, N, O, Na, Al, Ti, Sc and Fe were derived and compared with the abundances predicted by detailed AGB models. Both stars show very large N enhancements and C deficiencies. These results provide the first observational confirmation of the long-predicted production of primary nitrogen by the combination of third dredge-up and hot-bottom burning in intermediate-mass AGB stars. It was not possible to derive abundances for the remaining five stars: three were too cool to model, while another two had strong shocks in their atmospheres which caused strong emission to fill the line cores and made abundance determination impossible. The latter occurrence allows us to predict the pulsation phase interval during which observations should be made if successful abundance analysis is to be possible.  相似文献   

12.
13.
14.
Silicon carbide (SiC), a refractory material, condenses near the photospheres of C-rich asymptotic giant branch stars, giving rise to a conspicuous emission feature at 11.3 μm. In the presence of a stellar wind, the SiC grains are carried outwards to colder regions, where less-refractory carbonaceous material can condense, either by itself or in mantles upon SiC grains. Enough carbon can condense on the latter that their specific feature is completely veiled. Thus the following may be explained: (i) the coexistence of the SiC feature protruding above a carbonaceous continuum, with a range of contrasts, corresponding to various volume ratios of mantle to core; or (ii) the ultimate disappearance of the 11.3-μm feature from the interstellar medium, where the mantle has become completely opaque due to the much higher cosmic abundance of carbon.  相似文献   

15.
We study the pycnonuclear burning of 34Ne in the inner crust of an accreting neutron star. We show that the associated energy production rate can be calculated analytically for any arbitrary temporal variability of the mass accretion rate. We argue that the theoretical time-scale for 34Ne burning is currently very uncertain and ranges from a fraction of a millisecond to a few years. The fastest allowable burning may change the composition of the accreted crust while the slowest burning leads to a time-independent nuclear energy generation rate for a variable accretion. The results are important for constructing self-consistent models of the accreted crust and deep crustal heating in neutron stars which enter soft X-ray transients.  相似文献   

16.
Transiently accreting neutron stars in quiescence ( L X ≲1034 erg s−1) have been observed to vary in intensity by factors of few, over time-scales of days to years. If the quiescent luminosity is powered by a hot neutron star core, the core cooling time-scale is much longer than the recurrence time, and cannot explain the observed, more rapid variability. However, the non-equilibrium reactions which occur in the crust during outbursts deposit energy in isodensity shells, from which the thermal diffusion time-scale to the photosphere is days to years. The predicted magnitude of variability is too low to explain the observed variability unless – as is widely believed – the neutrons beyond the neutron-drip density are superfluid. Even then, the variability due to this mechanism in models with standard core neutrino cooling processes is less than 50 per cent – still too low to explain the reported variability. However, models with rapid core neutrino cooling can produce a variability by a factor as great as 20, on time-scales of days to years following an outburst. Thus, the factors of ∼ few intensity variability observed from transiently accreting neutron stars can be accounted for by this mechanism only if rapid core cooling processes are active.  相似文献   

17.
18.
We present theoretical evolutionary sequences of intermediate-mass stars  ( M = 3 − 6.5 M)  with metallicity   Z = 0.004  . Our goal is to test whether the self-enrichment scenario by massive asymptotic giant branch stars may work for the high-metallicity globular clusters, after previous works by the same group showed that the theoretical yields by this class of objects can reproduce the observed trends among the abundances of some elements, namely the O–Al and O–Na anticorrelations, at intermediate metallicities, i.e.  [Fe/H]=−1.3  . We find that the increase in the metallicity favours only a modest decrease of the luminosity and the temperature at the bottom of the envelope for the same core mass, and also the efficiency of the third dredge-up is scarcely altered. On the contrary, differences are found in the yields, due to the different impact that processes with the same efficiency have on the overall abundance of envelopes with different metallicities. We expect the same qualitative patterns as in the intermediate-metallicity case, but the slopes of some of the relationships among the abundances of some elements are different. We compare the sodium–oxygen anticorrelation for clusters of intermediate metallicity ( Z ≈ 10−3) and clusters of metallicity large as in these new models. Although the observational data are still too scarce, the models are consistent with the observed trends, provided that only stars of   M ≳ 5 M  contribute to self-enrichment.  相似文献   

19.
蒋苏云 《天文学报》2005,46(4):380-397
建立了热脉动AGB星氦燃烧壳层源出现非稳定热核反应的判据,新判据包含 了丰富的物理信息,它不仅与热脉动AGB星氦燃烧壳层源的几何性质有关,而且与氦燃 烧壳层源的力学、热学和化学的性质都有关. 提出了热脉动AGB星氦燃烧壳层源非稳定热核反应的发生和消失的机理,它可表述 为:热脉动AGB星氦燃烧壳层源的局部区域出现对流不稳定区会触发非稳定热核反应的 发生,非稳定热核反应会促使氦燃烧壳层源急速膨胀,氦燃烧壳层源的急速几何形变会消 除非稳定热核反应. 用改进后的Kippenhahn恒星演化程序对5M(?)恒星进行了从主序星到热脉动AGB 星的演化模型计算,结果表明新判据能很好地反映5M(?)AGB星氦燃烧壳层源的热核反应 情况.并得出5M(?)热脉动AGB星在第6次热脉动周期阶段,被挖掘到热脉动AGB星 表面的元素主要是在温度lgT2/K<8.155和密度4.0相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号