首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large body of recent work has linked the origin of Si-Al-rich alkaline glass inclusions to metasomatic processes in the upper mantle. This study examines one possible origin for these glass inclusions, i.e., the dissolution of orthopyroxene in Si-poor alkaline (basanitic) melt. Equilibrium dissolution experiments between 0.4 and 2 GPa show that secondary glass compositions are only slightly Si enriched and are alkali poor relative to natural glass inclusions. However, disequilibrium experiments designed to examine dissolution of orthopyroxene by a basanitic melt under anhydrous, hydrous and CO2-bearing conditions show complex reaction zones consisting of olivine, ± clinopyroxene and Si-rich alkaline glass similar in composition to that seen in mantle xenoliths. Dissolution rates are rapid and dependent on volatile content. Experiments using an anhydrous solvent show time dependent dissolution rates that are related to variable diffusion rates caused by the saturation of clinopyroxene in experiments longer than 10 minutes. The reaction zone glass shows a close compositional correspondence with natural Si-rich alkaline glass in mantle-derived xenoliths. The most Si-and alkali-rich melts are restricted to pressures of 1 GPa and below under anhydrous and CO2-bearing conditions. At 2 GPa glass in hydrous experiments is still Si-␣and alkali-rich whereas glass in the anhydrous and CO2-bearing experiments is only slightly enriched in SiO2 and alkalis compared with the original solvent. In the low pressure region, anhydrous and hydrous solvent melts yield glass of similar composition whereas the glass from CO2-bearing experiments is less SiO2 rich. The mechanism of dissolution of orthopyroxene is complex involving rapid incongruent breakdown of the orthopyroxene, combined with olivine saturation in the reaction zone forming up to 60% olivine. Inward diffusion of CaO causes clinopyroxene saturation and uphill diffusion of Na and K give the glasses their strongly alkaline characteristics. Addition of Na and K also causes minor SiO2 enrichment of the reaction glass by increasing the phase volume of olivine. Olivine and clinopyroxene are transiently stable phases within the reaction zone. Clinopyroxene is precipitated from the reaction zone melt near the orthopyroxene crystal and redissolved in the outer part of the reaction zone. Olivine defines the thickness of the reaction zone and is progressively dissolved in the solvent as the orthopyroxene continues to dissolve. Although there are compelling reasons for supporting the hypothesis that Si-rich alkaline melts are produced in the mantle by orthopyroxene – melt reaction in the mantle, there are several complications particularly regarding quenching in of disequilibrium reaction zone compositions and the mobility of highly polymerized melts in the upper mantle. It is considered likely that formation of veins and pools of Si-rich alkaline glass by orthopyroxene – melt reaction is a common process during the ascent of xenoliths. However, reaction in situ within the mantle will lead to equilibration and therefore secondary melts will be only moderately siliceous and alkali poor. Received: 24 August 1998 / Accepted: 2 December 1998  相似文献   

2.
As rock textures reflect the physical conditions and the mechanisms of formation of the rocks, new approaches are used for improving texture analyses, both qualitatively and quantitatively. Pioneer work has recently boosted interest in fractal analysis for quantifying and correlating patterns. Fractal‐like patterns relate to a degree of multiscale organization, and fractal dimensions (FD) and their potential variations can be used to infer the physical conditions of rock formation at various scales of observation. Here, we characterize quantitatively the shape and distribution of orthopyroxene grains in ultramafic xenoliths in terms of FD and their relation with temperature of equilibration. Fractal analysis has been applied to several populations of mantle xenoliths: 7 xenoliths collected in the vicinity of Pico Santa Isabel on Bioko Island, an alkaline basaltic volcano in oceanic domain (Gulf of Guinea, Equatorial Atlantic), 9 samples from Sangilen, in the Agardag alkaline lamprophyre dyke (Russia), and 11 samples form Śnieżnik (Lutynia, Poland), in the continental domain. Fractal analysis has been conducted to characterize the degree of complexity of the petrographic textures: it is indeed known that large values of FD are associated to more complex textures. The correlation here observed between the orthopyroxene fractal dimension and the temperature of equilibration suggests that FD captures a significant textural feature directly related to the temperature (i.e. generated by a temperature‐controlled process). The significant difference in the FD–T correlation observed for the continental and oceanic mantle domains suggests that the mechanical and rheological behaviour is distinct in the oceanic and continental lithospheres. These first promising results should be confirmed by analysing other mantle suites of rocks in different geodynamic settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A spinel ± amphibole ± feldspar bearing Iherzolites, a spinel ± amphibole ± feldspar bearing harzburgites, and a spinel ± amphibole ± phlogopite bearing wehrlites are metasomatized peridotitic mantle xenoliths from Ain Temouchent volcanic complex (North-West Algeria). These xenoliths are metamorphic/deformed rocks with a strong planar fabric typical of mantle tectonites. The wehrlites are not the result of a simple model of partial melting. The spinel ± amphibole ± feldspar bearing harzburgites and lherzolites exhibit asymmetric concave-shaped REE patterns. These indicate that an earlier partial melting event was followed by metasomatic processes. The wehrlites have higher REE concentrations and LREE/HREE fractionations, indicating a sequential evolution of wehrlites from previous refractory material with melting as an addition process. This process reflects the interaction of the lithospheric mantle beneath the Ain Temouchent area with basaltic melt. Metasomatism is expressed by the formation of amphibole, phlogopite, and increased abundances of clinopyroxene at the expense of orthopyroxene, in lherzolite and harzburgite. In the Ain Temouchent area, metasomatizing agents are Na-alkali silicates. The similarities observed between the glasses studied in this paper, and the basaltic host rocks of the Ain Temouchent area, may suggest a common mantle source, or with chemical similarities but with relatively different evolutions pathways. The formation of glass in wehrlites from the Ain Temouchent area has an origin formed by the breakdown of amphibole or phlogopite as a result of decompressional melting and production of silica-undersaturated glasses. The glass reacts with essentially orthopyroxene to produce silica-rich glasses. This study has contributed to highlighting a relationship between glass, and the processes that caused the formation of metasomatic phases.  相似文献   

4.
Zhao  XinMiao  Wang  Hui  Li  ZhiHan  Liu  FengLin  Evans  Noreen J.  Zhang  HongFu 《Mineralogy and Petrology》2020,114(2):141-159
Mineralogy and Petrology - A detailed study on petrology and mineral chemistry of 12 mantle xenoliths from Late Cretaceous basaltic lava flows at Daxizhuang has been conducted to constrain the...  相似文献   

5.
Fluid and solid inclusions have been studied in selected samples from a series of spinel-bearing Crdiopside-and Al-augite-series ultramafic (harzburgites, lherzolites, and olivine-clinopyroxene-rich rocks), and gabbroic xenoliths from Hierro, Canary Islands. In these samples several generations of fluid inclusions and ultramafic-and mafic-glass inclusions may be texturally related to different stages of crystal growth. The fluid inclusions consist of pure, or almost pure, CO2. The solid inclusions in the ultramafic xenoliths comprise early inclusions of devitrified ultramafic glass, sulphide inclusions, as well as polyphase inclusions (spinel+clinopyroxene±glass±other silicates) believed to have formed from trapped basaltic melts. Vitreous basaltic glass±CO2±sulphide±silicates are common as secondary inclusions in the ultramafic xenoliths, and as primary inclusions in the gabbroic xenoliths. Microthermometry gives minimum trapping temperatures of 1110° C for the early ultramafic-and mafic-glass inclusions, and a maximum of 1260–1280° C for late inclusions of host basaltic glass. In most samples the CO2 inclusions show a wide range in homogenization temperatures (-40 to +31° C) as a result of decrepitation during ascent. The lowest homogenization temperatures of about-40° C, recorded in some of the smallest CO2 inclusions, indicate a minimum depth of origin of 35 km (12 kbar) for both the Cr-diopside-and Al-augite-series xenoliths. The gabbroic xenoliths originate from a former magma chamber at a depth of 6–12 km.Contribution no. 100 of the Norwegian programme of the International Lithosphere Project  相似文献   

6.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

7.
8.
Mantle-derived xenoliths of spinel lherzolite, spinel pyroxenite, garnet pyroxenite and wehrlite from Bullenmerri and Gnotuk maars, southwestern Victoria, Australia contain up to 3 vol.% of fluids trapped at high pressures. The fluid-filled cavities range in size from fluid inclusions (1–100 m) up to vugs 11/2 cm across, lined with euhedral high-pressure phases. The larger cavities form an integral part of the mosaic microstructure. Microthermometry and Raman laser microprobe analysis show that the fluids are dominantly CO2. Small isolated inclusions may have densities 1.19 g/cm3, but most inclusions show microstructural evidence of partial decrepitation during eruption, and these have lower fluid densities. Mass-spectrometric analysis of gases released by crushing or heating shows the presence of He, N2, Ar, H2S, COs and SO2 in small quantities; these may explain the small freezing-point depressions observed in some inclusions. Petrographic, SEM and microprobe studies show that the trapped fluids have reacted with the cavity walls (in clinopyroxene grains) to produce secondary amphiboles and carbonates. The trapped CO2 thus represents only a small residual proportion of an original volatile phase, which has undergone at least two stages of modification — first by equilibration with spinel lherzolite to form amphibole (±mica±apatite), then by limited reaction with the walls of the fluid inclusions. The inferred original fluid was a CO2-H2O mixture, with significant contents of (at least) Cl and sulfur species. Generation of this fluid phase in the garnet-peridotite stability field, followed by its migration to the spinel peridotite stability field, would provide an efficient mechanism for metasomatic enrichment of the upper mantle in LIL elements. This migration could involve either a volatile flux or transport in small volumes of silicate melt that crystallize in the spinel peridotite field. These observations suggest that some portions of the subcontinental upper mantle contain large reservoirs of free fluid CO2, which may be liberated during episodes of rifting or magmatism, to induce granulite-facies metamorphism of the lower crust.  相似文献   

9.
An experimental study on the origin of ferric and ferrous carbonate-silicate melts, which can be considered as the potential metasomatic oxidizing agents and diamond forming media, was performed in the (Ca,Mg)CO3-SiO2-Al2O3-(Mg,Fe)(Cr,Fe,Ti)O3 system, at 6.3 GPa and 1350–1650 °C. At 1350–1450 °C and ?O2 of FMQ + 2 log units, carbonate–silicate melt, coexisting with Fe3 +-bearing ilmenite, pyrope-almandine and rutile, contained up to 13 wt.% of Fe2O3. An increase in the degree of partial melting was accompanied by decarbonation and melt enrichment with CO2, up to 21 wt.%. At 1550–1650 °C excess CO2 segregated as a separate fluid phase. The restricted solubility of CO2 in the melt indicated that investigated system did not achieve the second critical point at 6.3 GPa. At 1350–1450 °C and ?O2 close to CCO buffer, Fe2 +-bearing carbonate–silicate melt was formed in association with pyrope-almandine and Fe3 +-bearing rutile. It was experimentally shown that CO2-rich ferrous carbonate-silicate melt can be an effective waterless medium for the diamond crystallization. It provides relatively high diamond growth rates (3–5 μm/h) at P,T-conditions, corresponding to the formation of most natural diamonds.  相似文献   

10.
大兴安岭北部诺敏河地幔金云母及钾质地幔熔体研究   总被引:1,自引:1,他引:1  
隋建立  李霓  樊祺诚  徐义刚 《岩石学报》2014,30(12):3587-3594
在大兴安岭北部诺敏河第四纪钾质火山岩携带的地幔捕虏体中,发现少量金云母矿物和富钾地幔熔体。金云母颗粒大小1~5mm,呈网脉状充填在橄榄石和辉石、石榴子石等地幔矿物间隙。电子探针研究表明地幔橄榄石、单斜辉石、斜方辉石和石榴石等矿物几乎不含钾质成分(K2O0.01%),而金云母矿物成分具有高钾(K2O~10%)、高钛(Ti O25.41%~7.74%)的特点,暗示区域地幔钾的富集与金云母矿物有密切关系。地幔金云母的成因往往与富钾地幔流体/熔体的交代作用有关,在地幔捕虏体矿物反应边的硅酸盐熔体(囊体)中,发现富硅、富钾的熔体,K2O 4%~8%。结合前人地幔熔体研究,认为区域地幔经历了多期、不同成分地幔熔体的富集作用,其中富钾熔体对地幔钾质成分的富集起到重要作用。诺敏钾质火山正是富钾地幔部分熔融的产物,钾质熔体成分的来源可能与俯冲再循环的壳源物质有关。  相似文献   

11.
The Earth’s uppermost asthenosphere is generally associated with low seismic wave velocity and high electrical conductivity. The electrical conductivity anomalies observed from magnetotelluric studies have been attributed to the hydration of mantle minerals, traces of carbonatite melt, or silicate melts. We report the electrical conductivity of both H2O-bearing (0–6 wt% H2O) and CO2-bearing (0.5 wt% CO2) basaltic melts at 2 GPa and 1,473–1,923 K measured using impedance spectroscopy in a piston-cylinder apparatus. CO2 hardly affects conductivity at such a concentration level. The effect of water on the conductivity of basaltic melt is markedly larger than inferred from previous measurements on silicate melts of different composition. The conductivity of basaltic melts with more than 6 wt% of water approaches the values for carbonatites. Our data are reproduced within a factor of 1.1 by the equation log σ = 2.172 − (860.82 − 204.46 w 0.5)/(T − 1146.8), where σ is the electrical conductivity in S/m, T is the temperature in K, and w is the H2O content in wt%. We show that in a mantle with 125 ppm water and for a bulk water partition coefficient of 0.006 between minerals and melt, 2 vol% of melt will account for the observed electrical conductivity in the seismic low-velocity zone. However, for plausible higher water contents, stronger water partitioning into the melt or melt segregation in tube-like structures, even less than 1 vol% of hydrous melt, may be sufficient to produce the observed conductivity. We also show that ~1 vol% of hydrous melts are likely to be stable in the low-velocity zone, if the uncertainties in mantle water contents, in water partition coefficients, and in the effect of water on the melting point of peridotite are properly considered.  相似文献   

12.
This paper presents the textural, mineralogical and chemical study of veinlets cross-cutting peridotite xenoliths from the lithospheric mantle and brought to the surface by alkaline basalts (Persani Mountains, Romania). The veinlets utilized pre-existing zones of weakness in the host rocks or display a random distribution, lining grain boundaries or cross-cutting any mineral, and always forming an interconnected network. They are filled with carbonate patches included in a silicate matrix. Both products are holocrystalline. Carbonate products have alkali-poor calciocarbonatitic to sövitic compositions, while the silicate matrix composition ranges from monzodioritic to monzonitic and alkali feldspar syenitic, depending on the host-sample, i.e., within a rather alkaline silica-saturated series. The mineral phases present in the silicate matrix (F-apatite, armalcolite, chromite, diopside–enstatite series, plagioclase–sanidine series) are usually present in the carbonate zones, where forsterite is also found. Some minerals cross-cut the interface between both types of zones. Only the matrix is different, feldspathic (oligoclase to sanidine) in the former and pure calcite in the latter. Thus, mineralogical and textural relationships between both products are consistent with an origin with equilibrium liquid immiscibility. Mantle minerals cross-cut by veinlets are sometimes resorbed at grain boundaries, and at the contact of the most alkaline silicate and carbonate melts, subhedral diopside/augite formed at the expense of mantle enstatite or olivine. In terms of mineral chemistry, the compositional variations recorded by vein minerals vary along a continuous trend. They generally superpose to those observed from lherzolites to harzburgites, and exhibit the same range of composition as that observed between rims and cores of mantle minerals cross-cut by veinlets. In detail, the Ca-rich pyroxenes of veinlets are Al-poor and Mg-rich; cpx in the carbonate zones are slightly more Ca-rich than those in the silicate matrix; spinels are relatively Al- and Mg-poor but rather Cr- and Fe-rich. Existence of only one titanium oxide (armalcolite) and various pairs of pyroxenes suggest crystallization temperatures in the range 1100–1200°C and pressures between 10–15 kb. Feldspar compositions in silicate materials, which vary continuously from labradorite to sanidine, are consistent with hypersolvus and dry crystallization conditions. All of these results provide evidence that immiscibility occurred at mantle depth as the liquid was forcibly injected during hydraulic fracturing of the mantle. The compositions of conjugate melts suggest a very large miscibility gap, as expected at high pressure in a dry environment from the experiments of Kjarsgaard and Hamilton [Kjarsgaard, B.A., Hamilton, D.L., 1988. Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral. Mag. 52, 43–55; Kjarsgaard, B.A., Hamilton, D.L., 1989. The genesis of carbonatites by immiscibility. In: Bell, K. (Ed.), Carbonatites: Genesis and Evolution. Unwyn Hyman, London, pp. 388–404.]. The parental melt was carbonate, silica-undersaturated and rich in F, Cl and CO2. Both immiscible melts were water-undersaturated. The cooling rate until total crystallization in veinlets was very slow, limited and necessarily occurred at mantle depth. Wall rock reactions leading to the formation of Ca-rich pyroxene at the expense of mantle enstatite or olivine occurred only at the contact with somewhat alkali-rich carbonatitic or silicate melts. Calcite, always anhedral, is the last mineral to crystallize. It is a differentiation product formed by magmatic crystallization or wall rock reaction. In some cases, given the rarity of any other minerals, it may be the product of the crystallization of a pure sövite immiscible melt.  相似文献   

13.
The Dalnyaya kimberlite pipe(Yakutia,Russia) contains mantle peridotite xenoliths(mostly Iherzolites and harzburgites) that show both sheared porphyroclastic(deformed) and coarse granular textures,together with ilmenite and clinopyroxene megacrysts.Deformed peridotites contain high-temperature Fe-rich clinopyroxenes,sometimes associated with picroilmenites,which are products of interaction of the lithospheric mantle with protokimberlite related melts.The orthopyroxene-derived geotherm for the lithospheric mantle beneath Dalnyaya is stepped similar to that beneath the Udachnaya pipe.Coarse granular xenoliths fall on a geotherm of 35 mWm-2 whereas deformed varieties yield a 45 mWm-2)geotherm in the 2-7.5 GPa pressure interval.The chemistry of the constituent minerals including garnet,olivine and clinopyroxene shows trends of increasing Fe~#(=Fe/(Fe+Mg))with decreasing pressure.This may suggest that the interaction with fractionating protokimberlite melts occurred at different levels.Two major mantle lithologies are distinguished by the trace element patterns of their constituent minerals,determined by LA-ICP-MS.Orthopyroxenes,some clinopyroxenes and rare garnets are depleted in Ba,Sr,HFSE and MREE and represent relic lithospheric mantle.Re-fertilized garnet and clinopyroxene are more enriched.The distribution of trace elements between garnet and clinopyroxene shows that the garnets dissolved primary orthopyroxene and clinopyroxene.Later high temperature clinopyroxenes related to the protokimberlite melts partially dissolved these garnets.Olivines show decreases in Ni and increases in Al,Ca and Ti from Mg-rich varieties to the more Fe-rich,deformed and refertilized ones.Minerals showing higher Fe~#(0.11-0.15) are found within intergrowths of low-Cr ilmenite-clinopyroxene-garnet related to the crystallization of protokimberlite melts in feeder channels.In P-f(O_2) diagrams,garnets and Cr-rich clinopyroxenes indicate reduced conditions at the base of the lithosphere at-5 log units below a FMQ buffer.However,Cr-poor clinopyroxenes,together with ilmenite and some Fe-Ca-rich garnets,demonstrate a more oxidized trend in the lower part of lithosphere at-2 to 0 log units relative to FMQ.Clinopyroxenes from xenoliths in most cases show conditions transitional between those determined for garnets and megacrystalline Cr-poor suite.The relatively low diamond grade of Dalnyaya kimberlites is explained by a high degree of interaction with the oxidized protokimberlite melts,which is greater at the base of the lithosphere.  相似文献   

14.
吉林双辽地区古近纪玄武岩中一方辉橄榄岩包体记录了上地幔交代作用的信息。原生斜方辉石被交代成因的单斜辉石和橄榄石所围绕,或形成反应边结构,或斜方辉石残留在次生单斜辉石中。这些反应结构仅出现在尖晶石的周围。电子探针分析表明次生单斜辉石具有高Mg#、Cr#和CaO/Al2O3比值,次生橄榄石高Mg#、CaO和Cr2O3,被交代的尖晶石边部高Cr#、CaO。由于交代作用并未影响橄榄岩体系的Mg#,而且熔体-岩石反应结构指示Opx(斜方辉石) Sp(尖晶石) 熔体(Ⅰ)→Cpx(单斜辉石) Ol(橄榄石) 熔体(Ⅱ),结合实验以及文献资料,认为双辽地区的岩石圈地幔受到了硅酸盐熔体的交代。这种交代导致橄榄岩中斜方辉石逐渐减少,单斜辉石和橄榄石逐渐增加,从而使方辉橄榄岩渐变成易剥橄榄岩。这种交代现象可能发生在软流圈-岩石圈接触带上的熔-岩反应区,暗示了在古近纪双辽地区岩石圈减薄和软流圈上涌导致的软流圈-岩石圈的相互作用仍在继续。  相似文献   

15.
The study focuses on clinopyroxene from mantle xenolith-bearing East Serbian basanites and suggests that dissolution of mantle orthopyroxene played an important role in at least some stages of the crystallization of these alkaline magmas. Five compositional types of clinopyroxene are distinguished, some of them having different textural forms: megacrysts (Type-A), green/colourless-cored phenocrysts (Type-B), overgrowths and sieve-textured cores (Type-C), rims and matrix clinopyroxene (Type-D), and clinopyroxene from the reaction rims around orthopyroxene xenocrysts (Type-E). Type-A is high-Al diopside that probably crystallized at near-liquidus conditions either directly from the host basanite or from compositionally similar magmas in previous magmatic episodes. Type-B cores show high VIAl/IVAl≥1 and low Mg# of mostly <75 and are interpreted as typical xenocrysts. Type-C, D and E are interpreted as typical cognate clinopyroxene. Type-D has Mg#<78, Al2O3?=?6–13?wt.%, TiO2?=?1.5–4.5?wt.%, and Na2O?=?0.4–0.8?wt.% and compositionally similar clinopyroxene is calculated by MELTS as a phase in equilibrium with the last 30?% of melt starting from the average host lava composition. Type-C has Mg#?=?72–89, Al2O3?=?4.5–9.5?wt.%, TiO2?=?1–2.5?wt.%, Na2O?=?0.35–1?wt.% and Cr2O3?=?0.1–1.5?wt.%. This clinopyroxene has some compositional similarities to Type-E occurring exclusively around mantle orthopyroxene. Cr/Al vs Al/Ti and Cr/Al vs Na/Ti plots revealed that Type-C clinopyroxene can crystallize from a mixture of the host basanite magma and 2–20?wt.% mantle orthopyroxene. Sieve-textured Type-C crystals show characteristics of experimentally produced skeletal clinopyroxene formed by orthopyroxene dissolution suggesting that crystallization of Type-C was both texturally and compositionally controlled by orthopyroxene breakdown. According to FeO/MgOcpx/melt modelling the first clinopyroxene precipitating from the host basanite was Type-A (T?~?1250?°C, p?~?1.5?GPa). Dissolution of orthopyroxene produced decreasing FeO/MgOmelt and crystallization of Type-E and sieve-textured Type-C clinopyroxene (0.3–0.8?GPa and 1200–1050?°C). The melt composition gradually shifted towards higher FeO/MgOmelt ratios precipitating more evolved Type-C and Type-D approaching near-solidus conditions (<0.3?GPa; ~950?°C).  相似文献   

16.
Vulture volcano displays a wide range of mafic to alkaline, carbonate-, and/or CaO-rich volcanic rocks, with subvolcanic and plutonic rocks together with mantle xenoliths in pyroclastic ejecta. The roles of magmatic volatiles such as CO2, S, and Cl have been determined from compositions and trapping temperatures of inclusions in phenocrysts, which include the Na-K-Ca-carbonate nyerereite within melilite. We surmise that this alkali carbonate crystallised from an appropriate carbonatitic melt at relatively high temperature. Carbonatitic metasomatic features are traceable throughout many of the mantle xenoliths, and various carbonatitic components are found in the late stage extrusive suite. There is no evidence that alkali carbonatite developed as a separate magma, but it may have been an important evolutionary stage. We compare the rare occurrence of nyerereite at Vulture with other carbonatites and with an unaltered kimberlite from the Udachnaya pipe. We review the evidence at Vulture for associated carbonatitic metasomatism in the mantle, and we suggest that low viscosity alkali carbonatitic melts may have a primary and much deeper origin than previously considered.  相似文献   

17.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

18.
Spongy textures are observed in mantle peridotite xenoliths hosted in Cenozoic kamafugites from the Western Qinling, central China. These textures are mainly developed in clinopyroxenes and spinels, and occur as spongy rims consisting of low-Na clinopyroxene, ilmenite, and bubbles, enclosing nonspongy cores. The ilmenites and bubbles exhibit shapes and sizes that vary with the width of the spongy rims. The spongy-textured minerals preserve primary shapes and well-defined grain boundaries and do not show apparent interaction with contact minerals or observed melts except the subsequent melts forming melt pockets. The xenocrysts display reactive zoning textures with host magmas rather than spongy textures. Compositionally, the spongy rims are enriched in Ca, Ti, and most trace elements, have high Cr#, and are depleted in Na, Al, Fe, AlVI, and AlIV/AlVI compared with the cores. These observations suggest that melts/host magmas did not play any significant role in the formation of the spongy textures. We therefore propose that spongy-textured clinopyroxenes and spinels in Western Qinling peridotite xenoliths developed from a decompression-induced partial melting event prior to formation of melt pockets and xenolith entrainment in host magmas.  相似文献   

19.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of ?0.25 to 0.14‰ for olivine, ?0.17 to 0.17‰ for orthopyroxene, ?0.21 to 0.27‰ for clinopyroxene, and ?0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

20.
Seafloor magnetotelluric (MT) data were collected at seven sites across the Hawaiian hot spot swell, spread approximately evenly between 120 and 800 km southwest of the Hawaiian-Emperor island chain. All data are consistent with an electrical strike direction of 300°, aligned along the seamount chain, and are well fit using two-dimensional (2D) inversion. The major features of the 2D electrical model are a resistive lithosphere underlain by a conductive lower mantle, and a narrow, conductive, ‘plume’ connecting the surface of the islands to the lower mantle. This plume is required; without it the swell bathymetry produces a large divergence of the along-strike and across-strike components of the MT fields, which is not seen in the data. The plume radius appears to be less than 100 km, and its resistivity of around 10 Ωm, extending to a depth of 150 km, is consistent with a bulk melt fraction of 5–10%.A seismic low velocity region (LVR) observed by Laske et al. [Laske, G., Phipp Morgan, J., Orcutt, J.A., 1999. First results from the Hawaiian SWELL experiment, Geophys. Res. Lett. 26, 3397–3400] at depths centered around 60 km and extending 300 km from the islands is not reflected in our inverse model, which extends high lithospheric resistivities to the edge of the conductive plume. Forward modeling shows that resistivities in the seismic LVR can be lowered at most to 30 Ωm, suggesting a maximum of 1% connected melt and probably less. However, a model of hot subsolidus lithosphere of 102 Ωm (1450–1500 °C) within the seismic LVR increasing to an off-swell resistivity of >103 Ωm (<1300 °C) fits the MT data adequately and is also consistent with the 5% drop in seismic velocities within the LVR. This suggests a ‘hot, dry lithosphere’ model of thermal rejuvination, or possibly underplated lithosphere depleted in volatiles due to melt extraction, either of which is derived from a relatively narrow mantle plume source of about 100 km radius. A simple thermal buoyancy calculation shows that the temperature structure implied by the electrical and seismic measurements is in quantitative agreement with the swell bathymetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号