首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interpretation of high-resolution 2D marine seismic profiles together with the analysis of sea-bottom cores allowed a stratigraphic and structural framework of the Provence continental shelf to be proposed. The integration of onshore and offshore stratigraphy, structure and geomorphology provided new insights into Messinian paleotopography and paleohydrography. A geological map of the offshore Provence continental shelf, isobath map of the base Plio-Quaternary surface are presented for the first time in this area. The base Plio-Quaternary surface is a polyphased unconformity that is composed of deep canyons developed by fluvial erosion during the Messinian event, and wave-cut surfaces formed during post-Messinian transgressions. The study evidenced a deep, E–W-trending canyon (Bandol canyon) connected to the head of the Cassidaigne canyon, and filled with up to 600 m-thick Plio-Quaternary deposits. The development of canyons on the Provence margin during the Messinian event was dominantly controlled by the lithology and structure of pre-Messinian formations. A map of the Messinian paleo-drainage network is proposed to explain the presence of deep canyons in the Eastern area and the lack of incision in the Western area. An underground karst drainage scheme is proposed, linked with the current submarine Port-Miou spring.  相似文献   

2.
The SW Iberian margin developed as a passive margin during Mesozoic times and was later inverted during the mainly Cenozoic Alpine orogeny. The initial syn-rift deposits include a Lower Jurassic evaporite unit of variable thickness. In the onshore, this unit is observed to thicken basinward (i.e., southward), in fault-controlled depocenters, and salt-related structures are only present in areas of thick initial evaporites. In the offshore, multiple salt-structures cored by the Lower Jurassic evaporites are interpreted on seismic reflection data and from exploratory drilling. Offshore salt structures include the allochthonous Esperança Salt Nappe, which extends over an area roughly 40 × 60 km. The abundance of salt-related structures and their geometry is observed to be controlled by the distribution of evaporite facies, which is in turn controlled by the structure of rift-related faulting. This paper presents a comprehensive study of salt tectonics over the entire onshore and offshore SW Iberian passive margin (southern Portugal and Gulf of Cadiz), covering all aspects from initial evaporite composition and thickness to the evolution of salt-related structures through Mesozoic extension and Cenozoic basin inversion.  相似文献   

3.
Aeromagnetic data collected over the Offshore Mahanadi Basin along the Eastern margin of India display high amplitude magnetic anomalies. The presence of a Cretaceous volcanic sequence masks the seismic response from the underlying basement and results in poor quality seismic data. In this study spectral analysis of the aeromagnetic data collected over this part of the Offshore Mahanadi Basin was carried out. Results of this analysis indicate the presence of a high density, highvelocity (6.45 km/s) mafic layer within the crystalline basement varying from 4–6 km depth. This intra-basement layer seems to have been affected by a number of lineaments, which have played a role in the evolution of the Mahanadi Offshore Basin. The western part of the offshore basin is affected by the volcanism related to the 85°E Ridge, whereas the intense anomaly band (900 nT) offshore Puri, Konark and Paradip is interpreted as a combined effect of crystalline Precambrian basement overlain (i) by Cretaceous volcanic rocks of variable thickness (25–860 m) and (ii) by a mafic layer within the basement.  相似文献   

4.
 The Mediterranean Ridge (eastern Mediterranean) is a large accretionary complex that results from the Africa–Europe–Aegean plates convergence. Multichannel seismic data, combined with previous results showed that the ridge comprises distinct major structural domains facing different forelands: (1) An outer domain is bounded to the south by the ridge toe. Underneath the Ionian and Levantine outer Ridge, Messinian evaporites act as a major decollement level. (2) An axial, or crestal, ridge domain with mud diapiric and mud volcano activity is bounded to the north by backthrust. (3) A less tectonized inner Ridge domain, possibly a series of former forearc basins, abuts the Hellenic Trench. The ridge displays strong along-strike variations. These variations can be interpreted as consequences of an ongoing collision against the Libyan continental promontory.  相似文献   

5.
The structural evolution of the Messinian evaporites in the Levantine Basin   总被引:2,自引:0,他引:2  
The Levantine Basin in the South-eastern Mediterranean Sea is a world class site for studying the initial stages of salt tectonics driven by differential sediment load, because the Messinian evaporites are comparatively young, the sediment load varies along the basin margin, they are hardly tectonically overprinted, and the geometry of the basin and the overburden is well-defined. In this study we analyse depositional phases of the evaporites and their structural evolution by means of high-resolution multi-channel seismic data. The basinal evaporites have a maximum thickness of about 2 km, precipitated during the Messinian Salinity Crisis, 5.3–5.9 Ma ago. The evaporite body is characterized by 5 transparent layers sequenced by four internal reflections. We suggest that each of the internal reflection bands indicate a change of evaporite facies, possibly interbedded clastic sediments, which were deposited during temporal sea level rises. All of these internal reflections are differently folded and distorted, proving that the deformation was syn-depositional. Thrust angles up to 14° are observed. Backstripping of the Pliocene–Quaternary reveals that salt tectonic is mainly driven by the sediment load of the Nile Cone. The direction of lateral salt displacement is mainly SSW–NNE and parallel to the bathymetric trend. Apparent rollback anticlines off Israel result rather from differential subsidence than from lateral salt displacement. In the south-eastern basin margin the deposition of the Isreali Slump Complex (ISC) is coeval with the onset of salt tectonic faulting, suggesting a causal link between slumping processes and salt tectonics.

The superposition of ‘thin-skinned’ tectonics and ‘thick-skinned’ tectonics becomes apparent in several locations: The fold belt off the Israeli Mediterranean slope mainly results from active strike-slip tectonics, which becomes evident in faults which reach from the seafloor well below the base of the evaporites. Owing to the wrenching of the crustal segments which are bounded by deep-rooted fault lines like the Damietta–Latakia, Pelusium and Shelf Edge Hinge line the setting is transpressional south of 32°N, where the fault lines bend further towards the west. This adds a component of ‘thick-skinned’ transpression to the generally ‘thin-skinned’ compressional regime in the basin. Above 1.5 km of evaporites, a mud volcano is observed with the mud source seemingly within the evaporite layer. At the eastern Cyprus Arc, the convergence zone of the African and the Anatolian plates, deep-rooted compression heavily deformed the base of the evaporites, whereas at the Eratosthenes Seamount mainly superficial compression affecting the Post-Messinian sediments and the top of the evaporites is observed.  相似文献   


6.
In deep-water Santos Basin, SE Brazil, hypersaline conditions during the Aptian resulted in the accumulation of halite and carnallite over which stratified evaporites, carbonates and shales were folded, translated downslope and thrusted above syn-rift structures. As a result, high-quality 3D seismic data reveal an incomplete relationship between pre-salt topography and the development of folds and thrusts in Aptian salt and younger units. In the study area, three characteristics contrast with known postulates on passive margins’ fold-and-thrust belts: a) the largest thrusts do not necessarily occur where the salt is thicker, b) synthetic-to-antithetic fault ratios are atypically high on the distal margin, and c) regions of intense folding do not necessarily coincide with the position of the larger syn-rift horsts and ramps below the salt. Regions marked by important erosion and truncation of pre-salt strata, uplifted and exposed sub-aerially before the deposition of Aptian salt, can form structural lows at present or be part of horsts uplifted after the Aptian. This is an observation that suggests significant intra-salt shear drag above pre-salt structural highs during Aptian-Late Cretaceous gravitational gliding, but not on younger horsts and ramps reactivated after the main phase of salt movement. Either formed by drag or sub-aerial erosion, strata truncation below the Aptian salt does not correlate with the present-day pre-salt structure in terms of its magnitude and distribution. In addition, there is a marked increase in deformation towards the distal margin, where low-angle thrusts are ubiquitous on seismic data. The geometry and large synthetic-to-antithetic fault ratios of post-salt strata on the distal margin lead us to consider a combination of gravitational gliding of salt from the northwest and ridge push from the east as responsible for the observed styles of salt deformation.  相似文献   

7.
A growing number of studies on shallow marine gas/fluid systems from across the globe indicate their abundance throughout geological epochs. However, these episodic events have not been fully integrated into the fundamental concepts of continental margin development, which are thought to be dictated by three elements: tectonics, sedimentation and eustasy. The current study focuses on the passive sector of the Levant Basin on the eastern Mediterranean continental margin where these elements are well constrained, in order to isolate the contribution of gas/fluid systems. Single-channel, multichannel and 3D seismic reflection data are interpreted in terms of variance, chaos, envelope and sweetness attributes. Correlation with the Romi-1 borehole and sequence boundaries constrains interpretation of seismic stratigraphy. Results show a variety of fluid- or gas-related features such as seafloor and subsurface pockmarks, volumes of acoustic blanking, bright spots, conic pinnacle mounds, gas chimneys and high sweetness zones that represent possible secondary reservoirs. It is suggested that gas/fluid migrate upwards along lithological conduits such as falling-stage systems tracts and sequence boundaries during both highstands and lowstands. In all, 13 mid-late Pleistocene sequence boundaries are accompanied by independent evidence of 13 eustatic sea-level drops. Whether this connection is coincidental or not requires further research. These findings fill gaps between previously reported sporadic appearances throughout the Levant Basin and margin and throughout geological time from the Messinian until the present day, and create a unified framework for understanding the system as a whole. Repetitive appearance of these features suggests that their role in the morphodynamics of continental margins is more important than previously thought and thus may constitute one of the key elements of continental margin development.  相似文献   

8.
This study focuses on the interpretation of stratigraphic sequences through the integration of biostratigraphic, well log and 3D seismic data. Sequence analysis is used to identify significant surfaces, systems tracts, and sequences for the Miocene succession.The depositional systems in this area are dominantly represented by submarine fans deposited on the slope and the basin floor. The main depositional elements that characterize these depositional settings are channel systems (channel-fills, channel-levee systems), frontal splays, frontal splay complexes, lobes of debrites and mass-transport complexes.Five genetic sequences were identified and eleven stratigraphic surfaces interpreted and correlated through the study area. The Oligocene-lower Miocene, lower Miocene and middle Miocene sequences were deposited in bathyal water depths, whereas the upper Miocene sequences (Tortonian and Messinian) were deposited in bathyal and outer neritic water depths. The bulk of the Miocene succession, from the older to younger deposits consists of mass-transport deposits (Oligocene-lower Miocene); mass transport deposits and turbidite deposits (lower Miocene); debrite deposits and turbidite deposits (middle Miocene); and debrite deposits, turbidite deposits and pelagic and hemipelagic sediments (upper Miocene). Cycles of sedimentation are delineated by regionally extensive maximum flooding surfaces within condensed sections of hemipelagic mudstone which represent starved basin floors. These condensed sections are markers for regional correlation, and the maximum flooding surfaces, which they include, are the key surfaces for the construction of the Miocene stratigraphic framework. The falling-stage system tract forms the bulk of the Miocene sequences. Individual sequence geometry and thickness were controlled largely by salt evacuation and large-scale sedimentation patterns. For the upper Miocene, the older sequence (Tortonian) includes sandy deposits, whereas the overlying younger sequence (Messinian) includes sandy facies at the base and muddy facies at the top; this trend reflects the change from slope to shelf settings.  相似文献   

9.
The oblique and diachronous collision of the Apennine-Maghrebian Chain with the Apulian (in the north-east) and Pelagian (in the south) continental forelands, has determined the characteristic arcuate structure of this orogen. The effects of Plio-Pleistocene deformation of the Calabrian Arc have been analysed on the basis of available reflection seismic profiles and using local time-structural maps reconstructed along the main structures. During this period, internal sectors of the Tertiary chain migrated forward on the oceanic Ionian foreland, and were cut by important strike-slip systems. These last have an orientation approximately coincident with that of the migration of the front, allowing differential movement of the different sectors of the arc, towards the weakly buoyant Ionian oceanic domain. The dataset suggests a clear connection between the development of the strike-slip systems cutting the chain and the direction of tectonic transport, towards the East during Late Messinian/Early Pliocene time, to the ESE during Late Pliocene/Early Pleistocene time, finally to the SSE during the Middle/Late Pleistocene to Present, showing a clockwise rotation in well defined stages during the kinematic evolution of the chain. The origin of the Strait of Messina during the different phases is also interpreted in the context of the analysed regional tectonic setting.  相似文献   

10.
The Labrador continental margin provides a rich source of data with which to study the relationships between stratigraphy, tectonics and paleoenvironment. We have completed a regional seismic interpretation and integrated this with new biostratigraphic data, based on analyses of palynomorphs from wells in the Hopedale and Saglek Basins which occur on this margin. Our results are summarized in a tectonostratigraphic chart, which displays new and consistent age control for the major lithostratigraphic units and provides more precise evaluation of their depositional and paleoenvironmental history. We have identified and dated six regional unconformities in the wells and we can recognize several others on the seismic data. The older unconformities (Cretaceous) are related to the tectonics of rifting and seafloor spreading, and may delineate the onset of different stages of the rift process. In the Paleocene-Early Eocene, unconformity development was influenced by episodic volcanism due to the passage of the proto-Iceland hotspot to the north and to a major change in spreading direction in the Labrador Sea. Many of these unconformities are also identified in offshore southwest Greenland and the Grand Banks, suggesting widespread controlling mechanisms. During the post-seafloor spreading stage the effects of mass wasting and slumping, and of paleoenvironmental controls on the stratigraphy, were more pronounced. We discuss the petroleum potential of the Hopedale Basin in terms of the structures we see on the seismic data, and highlight the Bjarni Formation, which likely contains the most prospective source and reservoir rocks in this Basin.  相似文献   

11.
Erosional unconformity surfaces are key indicators for the variations in eustatic sea level, ocean dynamics and climatic conditions which significantly affect depositional environments of sedimentary successions. Using a dense grid of 2D seismic data, we present new evidence from a frontier basin, the offshore Durban Basin, of a mid-Miocene age erosional unconformity that can be correlated with analogous horizons around the entire southern African continental margin.In the Durban Basin, this unconformity is typified by the incision of a mixed carbonate-siliciclastic wedge and ramp margin by a series of submarine canyons. Epeirogenic uplift of southern Africa characterised this period, with erosion and sediment bypass offshore concomitant with increases in offshore sedimentation rates. Although epeirogenic uplift appears to be the dominant mechanism affecting formation of the identified sequence boundary, it is postulated that an interplay between global eustatic sea-level fall, expansion of the east Antarctic ice sheets, and changes in deep oceanic current circulation patterns may have substantially contributed to erosion during this period.  相似文献   

12.
The Seram Trough is located in the northern part of the Banda Arc-Australian collision zone in eastern Indonesia and is currently the site of contraction between the Bird's Head of New Guinea and Seram Island. It has been interpreted as a subduction trench, an intra-continental thrust zone and foredeep, and a zone of strike-slip faulting. Recently acquired 2D seismic lines clarify its tectonic evolution and relationship to the Bird's Head. Folding in the Early Pliocene formed an anticlinorium running from Misool to the Onin Peninsula of Irian Jaya and produced a newly recognised angular unconformity. The unconformity truncates sediments as old as Middle Jurassic and is an ancient topographic surface with significant relief. It was later folded and now dips south towards the trough where it is covered by up to 3 km of sediments. Initial tilting of the unconformity surface was accompanied by deposition of a transgressive sequence which can be traced into the trough. This is overlain by two sequences which prograde towards the trough. These sequences show progressive rotation of the unconformity surface, gravitational displacement of sediments into the trough, and thrusting which continues to the present day. Contraction occurred in the trough after the Early Pliocene and is younger than the previously suggested Late Miocene age. Thrust faults in the trough deform sediments deposited above the unconformity and detach at the unconformity surface. On Seram thrust faults repeat Mesozoic–Miocene sequences and probably detach at their contact with metamorphic basement. The detachment surface must cut through the Mesozoic-Miocene sequence between Seram and the trough. This work suggests the Seram Trough is not a subduction trench but a foredeep produced in response to loading by the developing fold and thrust belt of Seram, with an associated peripheral bulge to the north. The Seram Trough is interpreted to be a very young zone of thrusting within the Australian continental margin.  相似文献   

13.
东海陆架盆地是位于中国东部华南大陆边缘的一个中、新生代叠合盆地,具有较大油气潜力。目前东海陆架盆地油气的发现均来自于新生界,对中生代残留地层的各方面特征认识不足:在空间上通常集中于特定构造单元,且基本位于盆地西部;在时间上主要涉及白垩纪和侏罗纪,且多是定性或半定量的研究。本文在前人研究的基础上,收集、整理了研究区目前最新、最全的反射地震资料和钻井数据,从钻遇中生界井的标定出发,以地震资料的层序划分和解释为基础,进行残留地层的研究,空间上统一盆地东、西两大坳陷带,时间上统揽白垩纪、侏罗纪以及前侏罗纪三个时期。结果表明,东海陆架盆地中生代残留地层遭受了后期严重的剥蚀改造,总体呈现东厚西薄、南厚北薄的特征,残留地层范围随时间不断东扩。对比各时期残留地层平面展布特征,揭示了东海陆架盆地的演变过程:三叠纪时期盆地原型为被动大陆边缘坳陷型盆地,早、中侏罗世时期为活动大陆边缘弧前盆地,晚侏罗世—晚白垩世时期为大陆边缘弧后伸展盆地;与此相对应,古太平洋板块俯冲肇始于晚三叠世—早、中侏罗世时期,板块后撤始于晚侏罗世。东海陆架盆地在中生代的东侧边界位于钓鱼岛隆褶带的东侧。  相似文献   

14.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   

15.
We use simple quantitative analyses to evaluate controversial water level scenarios for the Mediterranean “Lower Evaporites” of the Messinian salinity crisis. Our results indicate that a shallow-water scenario for the Lower Gypsum units – with Mediterranean water level lower than the sill at Gibraltar – would imply unrealistic salt thicknesses on the order of 3 km. Some outflow to the open ocean must have persisted, implying that the Mediterranean was a deep-water basin during Lower Gypsum formation. Since glacio-eustatic fluctuations do not seem to have had a major influence on Lower Gypsum deposits, Mediterranean water level was even substantially higher than the Gibraltar sill. Our analyses furthermore show that precessional changes in the freshwater budget may explain the observed cyclic lithological changes of gypsum and non-evaporitic sediments. Potential precipitation of gypsum in the deep Mediterranean basins would have critically depended on the availability of oxygen and thus on the stratification of the water column. Finally, our results indicate that the deep Mediterranean halite units could have been deposited under shallow conditions, assuming that they correspond to the ~ 70 kyr time interval between glacials TG12 and TG14, when Mediterranean outflow to the Atlantic was blocked.  相似文献   

16.
The Lower Cretaceous succession in the Barents Sea is listed as a potential play model by the Norwegian Petroleum Directorate. Reservoirs may occur in deep to shallow marine clastic wedges located in proximity to palaeo-highs and along basin margins. In addition, shelf-prism-scale clinoforms with high amplitude anomalies in their top- and bottomsets have been reported from reflection seismic but they have never been drilled. In Svalbard, the exposed northwestern corner of the Barents Shelf, Lower Cretaceous strata of shelfal to paralic origin occur, and includes the Rurikfjellet (Valanginian–Hauterivian/lowermost Barremian), Helvetiafjellet (lower Barremian–lower Aptian) and Carolinefjellet formations (lower Aptian–middle Albian). By combining sedimentological outcrop studies and dinocyst analyses with offshore seismic and well ties, this study investigate the link between the onshore strata and the offshore clinoforms. Age-vise, only three (S1–S3) of the seismic sequences defined in the offshore areas correlate to the onshore strata; S1 correspond to the Rurikfjellet Formation, S2 to the Helvetiafjellet Formation and the lower Carolinefjellet Formation, and S3 to the upper Carolinefjellet Formation. Offshore, all three sequences contain generally southward prograding shelf-prism-scale clinoforms. A lower Barremian subaerial unconformity defines the base of the Helvetiafjellet Formation, and its extent indicates that most of the Svalbard platform was exposed and acted as a bypass zone in the early Barremian. Onshore palaeo-current directions is generally towards the SE, roughly consistent with the clinoform accretion-direction towards the S. The local occurrence of a 150 m thick succession of gravity flow deposits transitionally overlain by prodelta slope to delta front deposits in the Rurikfjellet Formation, may indicate that shelf-edges also developed in Svalbard. The late Hauterivian age of theses deposits potentially highlights the inferred offlapping nature of the Lower Cretaceous strata as they predate the lower Barremian unconformity, and thus record a hitherto unknown regression in Svalbard. The presence of the lower Barremian subaerial unconformity in Svalbard, the general southeastward palaeo-current directions, and the age-equivalent clinoform-packages south of Svalbard, suggests that the onshore and offshore strata is genetically linked and was part of the same palaeo-drainage system.  相似文献   

17.
The Dezful Embayment is the most important fertile oil province of the Zagros Fold-Thrust Belt. It includes several incompetent strata as basal and intermediate décollement levels that play a significant role on the structural styles and hydrocarbon preservation. Based on the interpretation of seismic profiles, the influence of the Gachsaran Formation and the evaporitic Kalhur Member of the Asmari Formation on the geometry of deformation was investigated in different parts of the Dezful Embayment. Obtained results revealed that the thickness of the incompetent strata plays a crucial role in the formation and geometry of different types of fold structures (e.g. rounded, box, chevron, detachment fold) in the Dezful Embayment. There is a sharp difference between the geometry of surface and deep-seated structures due to the existence of thick intermediate décollements (e.g. Gachsaran and Kalhur) in the Dezful Embayment. Therefore, fault geometry and fold styles in upper and lower parts of these décollements are totally different. In addition, these incompetent strata act as a barrier level against the propagation of deep-seated faults into the overlying layers. Therefore, it seems that most of the faults exposed on the surface have originated from the upper décollement levels in the study area.  相似文献   

18.
In previous publications, the relationship between the Sirte Abyssal Plain as foreland and the Mediterranean Ridge as accretionary complex was considered to be simple: the foreland is undeformed, the accretionary complex consumes the foreland, the Messinian evaporites control the internal structure of the growing complex. The compilation of our own and published data results in a more complex tectonic pattern and a new geodynamic interpretation. The Sirte Abyssal Plain is imprinted by extensional tectonics which originated independently from and prior to the approaching process of accretion. The structural setting of the pre-Messinian and Messinian Sirte Abyssal Plain is responsible for the highly variable thickness of Messinian evaporites. The foreland setting in the Sirte Abyssal Plain also controls the internal structure of the Mediterranean Ridge, at least between the deformation front and Bannock Basin, following sediment deformation within the accretionary wedge with a dominating inherited SW-NE orientation. The taper angle of the post-Messinian Mediterranean Ridge is unusually small compared with other accretionary wedges. In the studied area, within a distance of about 45 km from the deformation front, there is no appreciable dip in the décollement. Therefore, the slope of the outer 45 km of the Mediterranean Ridge is considered to be caused only by gravitational spreading of Messinian evaporites deposited on the slope of pre-Messinian accretionary wedge. As a consequence, the Mediterranean Ridge underlying such slope is interpreted to belong to the foreland. The allochthonous evaporites overlie autochthonous evaporites of the Sirte Abyssal Plain. The NE-dipping décollement (and thus of the true tectonically driven deformation front) is expected to initiate at about the present position of Bannock Basin. The Sirte Abyssal Plain, the adjacent Cyrene Seamount and neighbouring seafloor relief on the African continental margin are considered to be the product of tectonic segmentation of the continental crust.  相似文献   

19.
The tectonic interpretation of basement structures in seismic reflection profiles from ocean-continent transitions (OCT) of magma-poor rifted margins is notoriously difficult due to the scarcity of borehole information. Low-angle intra-basement reflections are frequently interpreted as detachment faults, and in certain locations the drilled top of the basement is interpreted as exhumed detachment fault. The seismic expression of such detachment faults is, however, poorly understood. We address this problem by comparing synthetic seismic data from the Tasna OCT, an exposed remnant of a Tethyan margin, with seismic reflection data from Hobby High, a drilled basement high within the west Iberian margin. Both sites are widely considered as being representative of OCT zones. Their geological similarity and the complementary nature of the data enable us to perform a detailed investigation of the seismic structure and response of these OCT zones. This provides insights into the seismic imaging of OCT zones in general and the tectonic evolution of the associated detachment systems in particular. On the basis of the Tasna OCT models and their seismic responses we have identified some potential characteristics of intra- and top-basement detachments: (i) variable amplitudes and numerous diffractions from the top of exhumed subcontinental mantle, (ii) a continuous and strong reflection imaging the top of exhumed lower crustal rocks, and (iii) a weak and discontinuous reflection of inverse polarity representing a shallow intra-basement crust-mantle detachment. Similar features are consistently observed at geologically equivalent positions in the seismic data from Hobby High and may thus serve as guidelines for interpretation of seismic data from un-drilled OCT zones.  相似文献   

20.
The shelf-upper slope stratigraphy offshore and around the Guadalfeo River on the northern continental margin of the Alboran Sea, Western Mediterranean Basin, has been defined through the interpretation of a grid of Sparker seismic profiles. We tried to identify evolutionary trends in shelf growth, as well as to determine the regional/local factors that may modify the influence of glacio-eustatic fluctuations. Four major depositional sequences are identified in the sedimentary record by a detailed seismic interpretation, which defines three significant intervals of shelf-upper slope progradation, dominated by deposition of shelf-margin wedges, which resulted in uniform patterns of shelf-margin growth in response to significant sea-level falls. In contrast, the record of transgressive intervals is more variable, mainly as the result of distinct patterns of regressive-to-transgressive transitions. Major progradational wedges are internally composed of seaward-prograding, landward-thinning wedges, interpreted to represent shelf-margin deltaic deposits. In contrast, the last aggradational interval is composed of shelf-prograding wedges that show distinct characteristics, in terms of seismic facies, morphology and distribution when compared with previous shelf-margin wedges. These shelf wedges are thought to represent the particular case of Regressive Systems or Shelf Margin Systems Tracts, and their development seems to be controlled by a drastic change in main depocenter location, which moved from the upper slope to the shelf during the Pleistocene. The stacking pattern of seismic units, the shallowness of the acoustic basement and the migration of the shelf break are used to infer spatial and temporal changes in tectonic subsidence-uplift rates, which interact with low-order glacio-eustatic changes. For much of the Pliocene-Quaternary, uplifted sectors alternated laterally with sectors experiencing more subsidence. Subsequently, a significant change from lateral outgrowth to vertical accretion is recognised. This stratigraphic change could be related to the combined influence of increased subsidence rates on the shelf and the onset of higher-frequency glacio-eustatic cyclicity after the Mid Pleistocene Revolution that occurred around 1 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号