首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We analysed Rossi X-ray Timing Explorer Proportional Counter Array observations of a recent outburst of the X-ray pulsar XMMU J054134.7−682550. We calculated the pulse frequency history of the source. We found no sign of a binary companion. The source spins up when the X-ray flux is higher, with a correlation between the spin-up rate and X-ray flux, which may be interpreted as a sign of an accretion disc. On the other hand, the source was found to have an almost constant spin frequency when the X-ray flux is lower without any clear sign of a spin-down episode. The decrease in pulsed fraction with decreasing X-ray flux was interpreted as a sign of accretion geometry change, but we did not find any evidence of a transition from accretor to propeller regimes. The source was found to have variable pulse profiles. Two peaks in pulse profiles were usually observed. We studied the X-ray spectral evolution of the source throughout the observation. Pulse-phase-resolved analysis does not provide any further evidence for a cyclotron line, but may suggest a slight variation of intensity and width of the 6.4 keV iron line with phase.  相似文献   

2.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

3.
We have fitted ∼200 RXTE and INTEGRAL spectra of the neutron star (NS) low-mass X-ray binary (LMXB) GX 9+9 from 2002 to 2007 with a model consisting of a disc blackbody and another blackbody representing the spreading layer (SL), i.e. an extended accretion zone on the NS surface as opposed to the more traditional disc-like boundary layer. Contrary to theory, the SL temperature was seen to increase towards low SL luminosities, while the approximate angular extent had a nearly linear luminosity dependency. Comptonization was not required to adequately fit these spectra. Together with the ∼ 70° upper bound of inclination implied by the lack of eclipses, the best-fitting normalization of the accretion disc blackbody component implies a distance of ∼10 kpc, instead of the usually quoted 5 kpc.  相似文献   

4.
We report polarimetric, spectropolarimetric and photometric observations of the eclipsing ROSAT cataclysmic variable RX J0929.1−2404, which confirm that the system is a new polar (AM Herculis system). This brings the number of eclipsing polars to nine, with RX J0929.1−2404 being only the third such system above the period gap. Circular polarization variations from ∼−20 to 10 per cent are seen over the 3.39-h orbital period, with a minimum around the time of eclipse. The photopolarimetric data were modelled using arc-shaped cyclotron emission regions in a centred dipole geometry. Results imply that RX J0929.1−2404 is a 'two-pole' system, with one emission region partially visible at all orbital phases. Spectropolarimetry observations show some evidence for the presence of cyclotron humps in the continuum, with spacings consistent with a magnetic field strength of ∼20 MG. Photometry of the eclipses provides information on the size of the emission region, which is consistent with a hotspot on the surface of the white dwarf. The eclipse duration implies an inclination in the range 70°≲ i ≲78°.  相似文献   

5.
We present timing and spectral analysis of RXTE -PCA (Proportional Counter Array) observations of the accretion powered pulsar 4U 1907+09 between 2007 June and 2008 August. 4U 1907+09 had been in a spin-down episode with a spin-down rate of  −3.54 × 10−14 Hz s−1  before 1999. From RXTE observations after 2001 March, the source showed a ∼60 per cent decrease in spin-down magnitude, and INTEGRAL observations after 2003 March showed that source started to spin-up. We found that the source recently entered into a new spin-down episode with a spin-down rate of  −3.59 × 10−14 Hz s−1  . This spin-down rate is pretty close to the previous long-term spin-down rate of the source measured before 1999. From the spectral analysis, we showed that hydrogen column density varies with the orbital phase.  相似文献   

6.
We present new X-ray observations of the high-mass X-ray binary (HMXRB) pulsar OAO 1657−415, obtained during one orbital period (10.44 d) with the Rossi X-Ray Timing Explorer ( RXTE ). Using the binary orbital parameters, obtained from Burst and Transient Source Experiment (BATSE) observations, we resolve the fluctuations in the pulse frequency at time-scales on the order of 1 d for the first time. Recent BATSE results by Baykal showed that OAO 1657−415 has spin-up/down trends in its pulse frequency time series, without any correlation with the X-ray luminosity at energies >20 keV. In the present RXTE observations the source is found to be in an extended phase of spin-down. We also find a gradual increase in the X-ray luminosity which is correlated with a marginal spin-up episode. The marginal correlation between the gradual spin-up (or decrease in spin-down rate) and increase in X-ray luminosity suggests that OAO 1657−415 is observed during a stable accretion episode where the prograde accretion disc is formed.  相似文献   

7.
We present phase resolved optical spectroscopy and photometry of V4580 Sagittarii, the optical counterpart to the accretion powered millisecond pulsar SAX J1808.4−3658, obtained during the 2008 September/October outburst. Doppler tomography of the N  iii λ4640.64 Bowen blend emission line reveals a focused spot of emission at a location consistent with the secondary star. The velocity of this emission occurs at  324 ± 15 km s−1  ; applying a ' K -correction', we find the velocity of the secondary star projected on to the line of sight to be  370 ± 40 km s−1  . Based on existing pulse timing measurements, this constrains the mass ratio of the system to be  0.044+0.005−0.004  , and the mass function for the pulsar to be  0.44+0.16−0.13 M  . Combining this mass function with various inclination estimates from other authors, we find no evidence to suggest that the neutron star in SAX J1808.4−3658 is more massive than the canonical value of  1.4 M  . Our optical light curves exhibit a possible superhump modulation, expected for a system with such a low mass ratio. The equivalent width of the Ca  ii H and K interstellar absorption lines suggest that the distance to the source is ∼2.5 kpc. This is consistent with previous distance estimates based on type-I X-ray bursts which assume cosmic abundances of hydrogen, but lower than more recent estimates which assume helium-rich bursts.  相似文献   

8.
We analysed RXTE archival observations of 4U 1907+09 between 1996 February 17 and 2002 March 6. The pulse timing analysis showed that the source stayed at almost constant period around 1998 August and then started to spin-down at a rate of  (−1.887 ∓ 0.042) × 10−14 Hz s−1  which is ∼0.60 times lower than the long-term (∼15 yr) spin-down rate. Our pulse-frequency measurements for the first time resolved significant spin-down rate variations since the discovery of the source. We also presented orbital phase resolved X-ray spectra during two stable spin-down episodes during 1996 November–1997 December and 2001 March–2002 March. The source has been known to have two orbitally locked flares. We found that X-ray flux and spectral parameters except hydrogen column density agreed with each other during the flares. We interpreted the similar values of X-ray fluxes as an indication of the fact that the source accretes not only via transient retrograde accretion disc but also via the stellar wind of the companion, so that the variation of the accretion rate from the disc does not cause significant variation in the observed X-ray flux. Lack of significant change in spectral parameters except hydrogen column density was interpreted as a sign of the fact that the change in the spin-down rate of the source was not accompanied by a significant variation in the accretion geometry.  相似文献   

9.
The X-ray pulsar GX 1+4 was observed with the RXTE satellite for a total of 51 ks between 1996 July 19 and 21. During this period the flux decreased smoothly from an initial mean level of ≈6×1036 erg s−1 to a minimum of ≈4×1035 erg s−1 (2–60 keV, assuming a source distance of 10 kpc) before partially recovering towards the initial level at the end of the observation.
BATSE pulse timing measurements indicate that a torque reversal took place approximately 10 d after this observation. Both the mean pulse profile and the photon spectrum varied significantly. The observed variation in the source may provide important clues as to the mechanism of torque reversals.
The single best-fitting spectral model was based on a component originating from thermal photons with kT 0≈1 keV Comptonized by a plasma of temperature kT ≈7 keV. Both the flux modulation with phase during the brightest interval and the evolution of the mean spectra over the course of the observation are consistent with variations in this model component; with, in addition, a doubling of the column density n H contributing to the mean spectral change.
A strong flare of duration ≲50 s was observed during the interval of minimum flux, with the peak flux ≈20 times the mean level. Although beaming effects are likely to mask the true variation in M ˙ thought to give rise to the flare, the timing of a modest increase in flux prior to the flare is consistent with dual episodes of accretion resulting from successive orbits of a locally dense patch of matter in the accretion disc.  相似文献   

10.
We present the results of Rossi X-Ray Timing Explorer (RXTE) observations of the Be star X-ray binary system RX J0812.4-3114. A light curve obtained with the RXTE All-Sky Monitor (ASM) shows that the source is currently in an active state with outbursts occurring at approximately 80 day intervals. The source underwent a transition from an inactive state to this regular outburst state early in 1998. An observation of RX J0812.4-3114 was obtained with the RXTE Proportional Counter Array (PCA) close to the time of a predicted maximum in 1999 March, and strong pulsations were detected at a period of 31.88 s. This confirms the result of an earlier PCA observation by Reig & Roche that was also obtained serendipitously near the predicted maximum flux of the 80 day period and also near the start of the current active state. We interpret the periodicity in the ASM light curve as indicating the orbital period of RX J0812.4-3114 with outbursts occurring around periastron passage.  相似文献   

11.
We present results from modelling of quasi-simultaneous broad-band (radio through X-ray) observations of the Galactic stellar black hole (BH) transient X-ray binary (XRB) systems XTE J1118+480 and GX 339−4 using an irradiated disc + compact jet model. In addition to quantifying the physical properties of the jet, we have developed a new irradiated disc model which also constrains the geometry and temperature of the outer accretion disc by assuming a disc heated by viscous energy release and X-ray irradiation from the inner regions. For the source XTE J1118+480, which has better spectral coverage of the two in optical and near-infrared (OIR) wavelengths, we show that the entire broad-band continuum can be well described by an outflow-dominated model + an irradiated disc. The best-fitting radius of the outer edge of the disc is consistent with the Roche lobe geometry of the system, and the temperature of the outer edge of the accretion disc is similar to those found for other XRBs. Irradiation of the disc by the jet is found to be negligible for this source. For GX 339−4, the entire continuum is well described by the jet-dominated model only, with no disc component required. For the two XRBs, which have very different physical and orbital parameters and were in different accretion states during the observations, the sizes of the jet base are similar and both seem to prefer a high fraction of non-thermal electrons in the acceleration/shock region and a magnetically dominated plasma in the jet. These results, along with recent similar results from modelling other galactic XRBs and AGNs, may suggest an inherent unity in diversity in the geometric and radiative properties of compact jets from accreting black holes.  相似文献   

12.
We report on a comprehensive and consistent investigation into the X-ray emission from GX 339−4. All public observations in the 11 year RXTE archive were analysed. Three different types of model – single power law, broken power law and a disc + power law – were fitted to investigate the evolution of the disc, along with a fixed Gaussian component at 6.4 keV to investigate any iron line in the spectrum. We show that the relative variation in flux and X-ray colour between the two best sampled outbursts are very similar. The decay of the disc temperature during the outburst is clearly seen in the soft state. The expected decay is   S Disc∝ T 4  ; we measure   T 4.75±0.23  . This implies that the inner disc radius is approximately constant in the soft state. We also show a significant anticorrelation between the iron line equivalent width (EW) and the X-ray flux in the soft state while in the hard state the EW is independent of the flux. This results in hysteresis in the relation between X-ray flux and both line flux and EW. To compare the X-ray binary outburst to the behaviour seen in active galactic nuclei (AGN), we construct a disc fraction luminosity diagram for GX 339−4, the first for an X-ray binary. The shape qualitatively matches that produced for AGN. Linking this with the radio emission from GX 339−4 the change in radio spectrum between the disc and power-law-dominated states is clearly visible.  相似文献   

13.
14.
We present results from three XMM–Newton observations of the M31 low mass X-ray binary (LMXB) XMMU J004314.4+410726.3 (Bo 158), spaced over 3 d in 2004 July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-h period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anticorrelated with source intensity. In light of the 2004 XMM–Newton observations of Bo 158, we suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio ≲0.3 (period ≲4 h), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of  ∼11 P orb  , and prograde disc precession on a period of  29 ± 1 P orb  . This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on an  81 ± 3 h  cycle.  相似文献   

15.
We present the results of a 22.5 ks pointed ROSAT PSPC observation of the 3.4-h period eclipsing polar MN Hya (RX J0929.1−2404). The X-ray light curve exhibits a 'double-humped' shape, with a secondary minimum occuring at φ∼ 0.45, a morphology consistent with two-pole accretion. Strong aperiodic flaring activity, with flux enhancements of ∼ 6 × the quiescent level, is also observed. A pre-eclipse 'dip' occurs in the phase interval φ= 0.87–0.95 with the X-rays becoming harder, indicative of photoelectric absorption by the pre-shock flow. There is also evidence of a secondary spectrally hard 'dip' near φ = 0.45–0.55, which might be associated with a second accretion stream flowing to the other magnetic pole.   The X-ray spectrum is best represented by a combination of a ∼50 eV blackbody and a thermal bremsstrahlung component of kT 1.6 keV, with a total absorption column of N H  = 2.9 × 1020 cm−2.   The primary maximum (φ∼ 0.65) has a slightly larger column and normalization compared to the secondary maximum. Although there are few photons, the dip spectrum is very flat in comparison to other phases, and is best represented by a single bremsstrahlung component. This is indicative of the spectral hardening seen in the light curves attributed to photoabsorption. The ratio of unabsorbed bremsstrahlung and blackbody luminosities is ∼ 0.1 for the best-fitting average spectral models. This implies a magnetic field strength  30 MG on the basis of the empirical L hard/ L soft −  B relationships, although consideration of the cyclotron flux and aspect effects could allow for an even higher field (55 MG).  相似文献   

16.
Extremely strong ionized Fe emission lines, with equivalent widths reaching ∼4000 eV, were discovered by ASCA from a few Galactic compact objects, including AX J2315−0592, RX J1802.1+1804 and AX J1842.8−0423. These objects are thought to be binary systems containing magnetized white dwarfs (WDs). A possible interpretation of the strong Fe K line is the line-photon collimation in the WD accretion column, as a result of resonance scattering of line photons. The collimation occurs when the accretion column has a flat shape, and the effect is augmented by the vertical velocity gradient, which reduces the resonant trapping of resonant photons along the magnetic field lines. This effect was quantitatively confirmed with Monte Carlo simulations. Furthermore, with ASCA observations of the polar V834 Centauri, this collimation effect was clearly detected as a rotational modulation of the equivalent width of the Fe K emission line. The extremely strong emission lines mentioned above can be explained consistently by our interpretation. Combining this effect with other X-ray information, the geometry and plasma parameters in the accretion column were determined.  相似文献   

17.
We have carried out observations of the X-ray transient GX 339−4 during its high–soft and low–hard X-ray spectral states. Our high-resolution spectroscopic observation in 1999 April suggests that the H α line has a single-peaked profile in the low–hard state as speculated in our previous paper. The He  ii λ 4686 line, however, has a double-peaked profile in both the high–soft and low–hard states. This suggests that the line-emission mechanism is different in the two states. Our interpretation is that double-peaked lines are emitted from a temperature-inversion layer on the accretion disc surface when it is irradiatively heated by soft X-rays. Single-peaked lines may be emitted from outflow/wind matter driven by hard X-ray heating. We have constructed a simple plane-parallel model and we use it to illustrate that a temperature-inversion layer can be formed at the disc surface under X-ray illumination. We also discuss the conditions required for the formation of temperature inversion and line emission. Based on the velocity separations measured for the double-peaked lines in the high–soft state, we propose that GX 339−4 is a low-inclination binary system. The orbital inclination is about 15° if the orbital period is 14.8 h.  相似文献   

18.
We analysed the Rossi X-ray Timing Explorer ( RXTE ) archival data of 1E 1048.1−5937 covering a time-span of more than one year. The spin-down rate of this source decreases by ∼30 per cent during the observation. We could not resolve the X-ray flux variations because of contamination by eta Carinae. We find that the level of pulse frequency fluctuations of 1E 1048.1−5937 is consistent with typical noise levels of accretion-powered pulsars . Recent RXTE observations of 1E 2259+586 have shown a constant spin-down with a very low upper limit on timing noise. We used the RXTE archival X-ray observations of 1E 2259+586 to show that the intrinsic X-ray luminosity times-series is also stable, with an rms fractional variation of less than 15 per cent. The source could have been in a quiet phase of accretion with a constant X-ray luminosity and spin-down rate.  相似文献   

19.
We apply our technique for indirect imaging of the accretion stream to the polar HU Aquarii, using eclipse profiles observed when the system was in a high accretion state. The accretion stream is relatively luminous, contributing as much as the accretion region on the white dwarf, or more, to the overall system brightness. We model the eclipse profiles using a model stream consisting of a ballistic trajectory from the L1 point followed by a magnetically channelled trajectory that follows a dipole field line out of the orbital plane. We perform model fits using two geometries: a stream that accretes on to both footpoints of the field line, and a stream that accretes only on to the footpoint of the field line above the orbital plane. The stream images indicate that the distribution of emission along the stream is not a simple function of the radial distance from the white dwarf. The stream is redirected by the magnetic field of the white dwarf at a distance 1.0–1.3×1010 cm from the white dwarf; this implies a mass transfer rate in the range 8–76×1016 g s−1. The absorption dips in the light curve indicate that the magnetically entrained part of the stream moves from 42° to 48° from the line of centres over the three nights of observation. This is in close agreement with the results of the one-footpoint models, suggesting that this is the more appropriate geometry for these data. The stream images show that, in almost all sections of the stream, the flux peaks in B and is successively fainter in U , V and R .  相似文献   

20.
We report on observations of the X-ray pulsar IGR J16320−4751 (also known as AX J1631.9−4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) and XMM–Newton . We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at ∼1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320−4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301−2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of ∼0.07 keV. We discuss the origin of the X-ray emission in IGR J16320−4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号