首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 872 毫秒
1.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

2.
In this paper we deal with the circular Sitnikov problem as a subsystem of the three-dimensional circular restricted three-body problem. It has a first analytical part where by using elliptic functions we give the analytical expressions for the solutions of the circular Sitnikov problem and for the period function of its family of periodic orbits. We also analyze the qualitative and quantitative behavior of the period function. In the second numerical part, we study the linear stability of the family of periodic orbits of the Sitnikov problem, and of the families of periodic orbits of the three-dimensional circular restricted three-body problem which bifurcate from them; and we follow these bifurcated families until they end in families of periodic orbits of the planar circular restricted three-body problem. We compare our results with the previous ones of other authors on this problem. Finally, the characteristic curves of some bifurcated families obtained for the mass parameter close to 1/2 are also described.  相似文献   

3.
In this paper by means of a Poincaré map, we prove the existence of symmetric periodic orbits of the elliptic Sitnikov problem. Furthermore, using the presence of the Bernoulli shift as a subsystem of that Poincaré map, we prove that not all the periodic orbits of the Sitnikov problem are symmetric periodic orbits.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
In this study we consider the relationship between the survival time and the Lyapunov time for three-body systems. It is shown that the Sitnikov problem exhibits a two-part power-law relationship as demonstrated by Mikkola & Tanikawa for the general three-body problem. Using an approximate Poincaré map on an appropriate surface of section, we delineate escape regions in a domain of initial conditions and use these regions to analytically obtain a new functional relationship between the Lyapunov time and the survival time for the three-body problem. The marginal probability distributions of the Lyapunov and survival times are discussed and we show that the probability density function of Lyapunov times for the Sitnikov problem is similar to that for the general three-body problem.  相似文献   

5.
The objective of this paper is to find periodic solutions of the circular Sitnikov problem by the multiple scales method which is used to remove the secular terms and find the periodic approximated solutions in closed forms. Comparisons among a numerical solution (NS), the first approximated solution (FA) and the second approximated solution (SA) via multiple scales method are investigated graphically under different initial conditions. We observe that the initial conditions play a vital role in the numerical and approximated solutions behaviour. The obtained motion is periodic, but the difference of its amplitude is directly proportional with the initial conditions. We prove that the obtained motion by the numerical or the second approximated solutions is a regular and periodic, when the infinitesimal body starts its motion from a nearer position to the common center of primaries. Otherwise when the start point distance of motion is far from this center, the numerical solution may not be represent a periodic motion for along time, while the second approximated solution may present a chaotic motion, however it is always periodic all time. But the obtained motion by the first approximated solution is periodic and has regularity in its periodicity all time. Finally we remark that the provided solutions by multiple scales methods reflect the true motion of the Sitnikov restricted three–body problem, and the second approximation has more accuracy than the first approximation. Moreover the solutions of multiple scales technique are more realistic than the numerical solution because there is always a warranty that the motion is periodic all time.  相似文献   

6.
The Sitnikov configuration is a special case of the restricted three-body problem where the two primaries are of equal masses and the third body of a negligible mass moves along a straight line perpendicular to the orbital plane of the primaries and passes through their center of mass. It may serve as a toy model in dynamical astronomy, and can be used to study the three-dimensional orbits in more applicable cases of the classical three-body problem. The present paper concerns the straight-line oscillations of the Sitnikov family of the photogravitational circular restricted three-body problem as well as the associated families of three-dimensional periodic orbits. From the stability analysis of the Sitnikov family and by using appropriate correctors we have computed accurately 49 critical orbits at which families of 3D periodic orbits of the same period bifurcate. All these families have been computed in both cases of equal and non-equal primaries, and consist entirely of unstable orbits. They all terminate with coplanar periodic orbits. We have also found 35 critical orbits at which period doubling bifurcations occur. Several families of 3D periodic orbits bifurcating at these critical Sitnikov orbits have also been given. These families contain stable parts and close upon themselves containing no coplanar orbits.  相似文献   

7.
We present results about the stability of vertical motion and its bifurcations into families of 3-dimensional (3D) periodic orbits in the Sitnikov restricted N-body problem. In particular, we consider ν = N ? 1 equal mass primary bodies which rotate on a circle, while the Nth body (of negligible mass) moves perpendicularly to the plane of the primaries. Thus, we extend previous work on the 4-body Sitnikov problem to the N-body case, with N = 5, 9, 15, 25 and beyond. We find, for all cases we have considered with N ≥ 4, that the Sitnikov family has only one stability interval (on the z-axis), unlike the N = 3 case where there is an infinity of such intervals. We also show that for N = 5, 9, 15, 25 there are, respectively, 14, 16, 18, 20 critical Sitnikov periodic orbits from which 3D families (no longer rectilinear) bifurcate. We have also studied the physically interesting question of the extent of bounded dynamics away from the z-axis, taking initial conditions on x, y planes, at constant z(0) = z 0 values, where z 0 lies within the interval of stable rectilinear motions. We performed a similar study of the dynamics near some members of 3D families of periodic solutions and found, on suitably chosen Poincaré surfaces of section, “islands” of ordered motion, while away from them most orbits become chaotic and eventually escape to infinity. Finally, we solve the equations of motion of a small mass in the presence of a uniform rotating ring. Studying the stability of the vertical orbits in that case, we again discover a single stability interval, which, as N grows, tends to coincide with the stability interval of the N-body problem, when the values of the density and radius of the ring equal those of the corresponding system of N ? 1 primary masses.  相似文献   

8.
In this article we treat the 'Extended Sitnikov Problem' where three bodies of equal masses stay always in the Sitnikov configuration. One of the bodies is confined to a motion perpendicular to the instantaneous plane of motion of the two other bodies (called the primaries), which are always equally far away from the barycenter of the system (and from the third body). In contrary to the Sitnikov Problem with one mass less body the primaries are not moving on Keplerian orbits. After a qualitative analysis of possible motions in the 'Extended Sitnikov Problem' we explore the structure of phase space with the aid of properly chosen surfaces of section. It turns out that for very small energies H the motion is possible only in small region of phase space and only thin layers of chaos appear in this region of mostly regular motion. We have chosen the plane ( ) as surface of section, where r is the distance between the primaries; we plot the respective points when the three bodies are 'aligned'. The fixed point which corresponds to the 1 : 2 resonant orbit between the primaries' period and the period of motion of the third mass is in the middle of the region of motion. For low energies this fixed point is stable, then for an increased value of the energy splits into an unstable and two stable fixed points. The unstable fixed point splits again for larger energies into a stable and two unstable ones. For energies close toH = 0 the stable center splits one more time into an unstable and two stable ones. With increasing energy more and more of the phase space is filled with chaotic orbits with very long intermediate time intervals in between two crossings of the surface of section. We also checked the rotation numbers for some specific orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
The spatial restricted rhomboidal five-body problem, or shortly, SRRFBP, is a five body problem in which four positive masses, called the primaries, move two by two in coplanar circular motions with the center of mass fixed at the origin such that their configuration is always a rhombus, the fifth mass being negligible and not influencing the motion of the four primaries. The Hamiltonian function that governs the motion of the fifth mass is derived and has three degrees of freedom depending periodically on time. Using a synodical system of coordinates, we fix the primaries in order to eliminate the time dependence. With the help of the Hamiltonian structure, we characterize the regions of possible motion. The vertical $z$ axis is invariant and we study what we call the rhomboidal Sitnikov problem. Unlike the classical Sitnikov problem, no chaos exists and the behavior of the fifth mass is quite predictable, periodic solutions of arbitrary long periods are shown to exist and we study numerically their linear horizontal stability.  相似文献   

10.
11.
We study the motion of negligible mass in the frame work of Sitnikov five-body problem where four equal oblate spheroids known as primaries symmetrical in all respect are placed at the vertices of square. These primaries are also considered as source of radiations moving in a circular orbit around their common center of mass. The fifth negligible mass performs oscillations along z-axis which is perpendicular to the orbital plane of motion of the primaries and passes through the center of mass of the primaries. Under the combined effects of radiation pressure and oblateness, we have developed the series solution by the Lindstedt-Poincare technique and established averaged Hamiltonians by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (1983). The orbits such as regular, periodic, quasi-periodic, chaotic, or stochastic have been examined with the help of Poincare surfaces of section.  相似文献   

12.
We consider the square configuration of photo-gravitational elliptic restricted five-body problem and study the Sitnikov motions. The four radiating primaries are of equal mass placed at the vertices of square and the fifth body having negligible mass performs oscillations along a straight line perpendicular to the orbital plane of the primaries. The motion of the fifth body is called vertical periodic motion and the main aim of this paper is to study the effect of radiation pressure on these periodic motions in the linear approximation. Moreover, the effects of radiation pressure on the motion of fifth body have been examined with the help of Poincare surfaces of section. By escalating the radiation pressure, surrounding periodic tubes and islands disappear and chaotic motion occurs near the hyperbolic points. Further, by escalating the radiation pressure, the main stochastic region joins the escaping one.  相似文献   

13.
We deal with the problem of a zero mass body oscillating perpendicular to a plane in which two heavy bodies of equal mass orbit each other on Keplerian ellipses. The zero mass body intersects the primaries plane at the systems barycenter. This problem is commonly known as theSitnikov Problem. In this work we are looking for a first integral related to the oscillatory motion of the zero mass body. This is done by first expressing the equation of motion by a second order polynomial differential equation using a Chebyshev approximation techniques. Next we search for an autonomous mapping of the canonical variables over one period of the primaries. For that we discretize the time dependent coefficient functions in a certain number of Dirac Delta Functions and we concatenate the elementary mappings related to the single Delta Function Pulses. Finally for the so obtained polynomial mapping we look for an integral also in polynomial form. The invariant curves in the two dimensional phase space of the canonical variables are investigated as function of the primaries eccentricity and their initial phase. In addition we present a detailed analysis of the linearized Sitnikov Problem which is valid for infinitesimally small oscillation amplitudes of the zero mass body. All computations are performed automatically by the FORTRAN program SALOME which has been designed for stability considerations in high energy particle accelerators.  相似文献   

14.
We consider the photogravitational restricted three-body problem with oblateness and study the Sitnikov motions. The family of straight line oscillations exists only in the case where the primaries are of equal masses as in the classical Sitnikov problem and have the same oblateness coefficients and radiation factors. A perturbation method based on Floquet theory is applied in order to study the stability of the motion and critical orbits are determined numerically at which families of three-dimensional periodic orbits of the same or double period bifurcate. Many of these families are computed.  相似文献   

15.
The association of the Sitnikov family with families of multiple three-dimensional periodic orbits is studied. In particular, the families consisting of three-dimensional periodic orbits bifurcating from self-resonant orbits of the Sitnikov family at double, triple and quadruple period of the bifurcation orbit are considered. The branch families close upon themselves and remain 3D up to their terminations having two common members with the Sitnikov family. By varying the mass parameter we also study the evolution of some of the computed families and find that they become isolas and disappear gradually in three-dimensions by shrinking to point size.  相似文献   

16.
This article deals with the region of motion in the Sitnikov four-body problem where three bodies (called primaries) of equal masses fixed at the vertices of an equilateral triangle. Fourth mass which is finite confined to moves only along a line perpendicular to the instantaneous plane of the motions of the primaries. Contrary to the Sitnikov problem with one massless body the primaries are moving in non-Keplerian orbits about their centre of mass. It is investigated that for very small range of energy h the motion is possible only in small region of phase space. Condition of bounded motions has been derived. We have explored the structure of phase space with the help of properly chosen surfaces of section. Poincarè surfaces of section for the energy range ?0.480≤h≤?0.345 have been computed. We have chosen the plane (q 1,p 1) as surface of section, with q 1 is the distance of a primary from the centre of mass. We plot the respective points when the fourth body crosses the plane q 2=0. For low energy the central fixed point is stable but for higher value of energy splits in to an unstable and two stable fixed points. The central unstable fixed point once again splits for higher energy into a stable and three unstable fixed points. It is found that at h=?0.345 the whole phase space is filled with chaotic orbits.  相似文献   

17.
We consider the Sitnikov problem; from the equations of motion we derive the approximate Hamiltonian flow. Then, we introduce suitable action–angle variables in order to construct a high order normal form of the Hamiltonian. We introduce Birkhoff Cartesian coordinates near the elliptic orbit and we analyze the behavior of the remainder of the normal form. Finally, we derive a kind of local stability estimate in the vicinity of the periodic orbit for exponentially long times using the normal form up to 40th order in Cartesian coordinates.  相似文献   

18.
An analytical study of the elliptic Sitnikov restricted four-body problem when all the primaries as source of same radiation pressure is presented. We find a solution, which is valid for small bounded oscillations in case of moderate eccentricity of the primary. We have linearized the equation of motion to obtain the Hill’s type equation. Using the Courant and Snyder transformation, Hill’s equation transformed into harmonic oscillator type equation. We have used the Lindstedt-Poincare perturbation method and again we have applied the Courant and Snyder transformation to obtain the final result.  相似文献   

19.
A family of straight line periodic motions, known as the Sitnikov motions and existing in the case of equal primaries of the three body problem, is studied with respect to stability and bifurcations. Continuation of the bifurcations into the case of unequal primaries is also discussed and some of the bifurcating families of three-dimensional periodic motions are computed.  相似文献   

20.
A new analytic expression for the position of the infinitesimal body in the elliptic Sitnikov problem is presented. This solution is valid for small bounded oscillations in cases of moderate primary eccentricities. We first linearize the problem and obtain solution to this Hill's type equation. After that the lowest order nonlinear force is added to the problem. The final solution to the equation with nonlinear force included is obtained through first the use of a Courant and Snyder transformation followed by the Lindstedt–Poincaré perturbation method and again an application of Courant and Snyder transformation. The solution thus obtained is compared with existing solutions, and satisfactory agreement is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号