首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
K. Tsiganis  H. Varvoglis 《Icarus》2003,166(1):131-140
A population of 23 asteroids is currently observed in a very unstable region of the main belt, the 7/3 Kirkwood gap. The small size of these bodies—with the notable exception of (677) Aaltje (∼30 km)—as well as the computation of their dynamical lifetimes (3<TD<172 Myr) shows that they cannot be on their primordial orbits, but were recently injected in the resonance. The distribution of inclinations appears to be bimodal, the two peaks being close to 2° and 10°. We argue that the resonant population is constantly being replenished by the slow leakage of asteroids from both the Koronis (I∼2°) and Eos (I∼10°) families, due to the drift of their semi-major axes, caused by the Yarkovsky effect. Assuming previously reported values for the Yarkovsky mean drift rate, we calculate the flux of family members needed to sustain the currently observed population in steady state. The number densities with respect to semi-major axis of the observed members of both families are in very good agreement with our calculations. The fact that (677) Aaltje is currently observed in the resonance is most likely an exceptional event. This asteroid should not be genetically related to any of the above families. Its size and the eccentricity of its orbit suggest that the Yarkovsky effect should have been less efficient in transporting this body to the resonance than close encounters with Ceres.  相似文献   

2.
Irregular satellites—moons that occupy large orbits of significant eccentricity e and/or inclination I—circle each of the giant planets. The irregulars often extend close to the orbital stability limit, about 1/3-1/2 of the way to the edge of their planet's Hill sphere. The distant, elongated, and inclined orbits suggest capture, which presumably would give a random distribution of inclinations. Yet, no known irregulars have inclinations (relative to the ecliptic) between 47 and 141°.This paper shows that many high-I orbits are unstable due to secular solar perturbations. High-inclination orbits suffer appreciable periodic changes in eccentricity; large eccentricities can either drive particles with ∼70°<I<110° deep into the realm of the regular satellites (where collisions and scatterings are likely to remove them from planetocentric orbits on a timescale of 107-109 years) or expel them from the Hill sphere of the planet.By carrying out long-term (109 years) orbital integrations for a variety of hypothetical satellites, we demonstrate that solar and planetary perturbations, by causing particles to strike (or to escape) their planet, considerably broaden this zone of avoidance. It grows to at least 55°<I<130° for orbits whose pericenters freely oscillate from 0 to 360°, while particles whose pericenters are locked at ±90° (Kozai mechanism) can remain for longer times.We estimate that the stable phase space (over 10 Myr) for satellites trapped in the Kozai resonance contains ∼10% of all stable orbits, suggesting the possible existence of a family of undiscovered objects at higher inclinations than those currently known.  相似文献   

3.
We carried out new observations of the binary asteroid 22 Kalliope (S2/2001) with the Shane 3-m telescope of the Lick observatory in October and November 2001. With a FWHM (full width at half maximum) of 0″.2, Kalliope (apparent size of about 0″.15) was not resolved but it was possible to separate the secondary from its primary whose apparent separation was of the order of 0″.7 with a magnitude difference of 3.22±0.20. As each set of observations spanned a few days of time, they are well distributed along the secondary's orbit, enabling us to accurately estimate its orbit.The satellite orbits 22 Kalliope in a prograde manner with respect to Kalliope's rotational spin (which is in a retrograde sense relative to its orbit around the Sun), on a highly inclined (i=19.8±2.0 with respect to the equator of 22 Kalliope) and moderately eccentric orbit (e=0.07±0.02) with an orbital period of 3.58±0.08 days. The semi-major axis is 1020±40 km. Using Kalliope's diameter as determined from IRAS data, the asteroid's bulk density is about 2.03±0.16 g cm−3, suggestive of a highly porous body with a porosity of 70% considering that the grain density of its meteoritic analog is of ∼7.4 g cm−3. This suggests a rubble pile, rather than solid, body. The measured nodal precession rate of the secondary's orbit seems to be much higher than expected from Kalliope's oblateness, assuming a homogeneous body (constant density). This suggests that Kalliope may be 60% more elongated or 35% larger than presently believed or/and that its internal structure is highly inhomogeneous with a denser outer shell.  相似文献   

4.
We observed near-Earth Asteroid (NEA) 2002 CE26 in August and September 2004 using the Arecibo S-band (2380-MHz, 12.6-cm) radar and NASA's Infrared Telescope Facility (IRTF). Shape models obtained based on inversion of our delay-Doppler images show the asteroid to be 3.5±0.4 km in diameter and spheroidal; our corresponding nominal estimates of its visual and radar albedos are 0.07 and 0.24, respectively. Our IRTF spectrum shows the asteroid to be C-class with no evidence of hydration. Thermal models from the IRTF data provide a size and visual albedo consistent with the radar-derived estimate. We estimate the spin-pole to be within a few tens of degrees of λ=317°, β=−20°. Our radar observations reveal a secondary approximately 0.3 km in diameter, giving this binary one of the largest size differentials of any known NEA. The secondary is in a near-circular orbit with period 15.6±0.1 h and a semi-major axis of 4.7±0.2 km. Estimates of the binary orbital pole and secondary rotation rate are consistent with the secondary being in a spin-locked equatorial orbit. The orbit corresponds to a primary mass of M=1.95±0.25×1013 kg, leading to a primary bulk density of , one of the lowest values yet measured for a main-belt or near-Earth asteroid.  相似文献   

5.
Using Cassini images, we examine the faint material along the orbits of Methone, Anthe and Pallene, three small moons that reside between the orbits of Mimas and Enceladus. A continuous ring of material covers the orbit of Pallene; it is visible at extremely high phase angles and appears to be localized vertically to within ±25 km of Pallene's inclined orbit. By contrast, the material associated with Anthe and Methone appears to lie in longitudinally confined arcs. The Methone arc extends over ∼10° in longitude around the satellite's position, while the Anthe arc reaches ∼20° in length. The extents of these arcs are consistent with their confinement by nearby corotation eccentricity resonances with Mimas. Anthe has even been observed to shift in longitude relative to its arc in the expected manner given the predicted librations of the moon.  相似文献   

6.
C.L Dandy  A Fitzsimmons 《Icarus》2003,163(2):363-373
We present the results of BVRIZ photometry of 56 near-Earth objects (NEOs) obtained with the 1-m Jacobus Kapteyn telescope on La Palma during 2000 and 2001. Our sample includes many NEOs with particularly deep 1-μm pyroxene/olivine absorption bands, similar to Q-type asteroids. We also classify three NEOs with particularly blue colors. No D-type asteroids were found, placing an upper limit of ∼2% on the fraction of the NEO population originating in the outer main belt or the Trojan clouds. The ratio of dark to bright objects in our sample was found to be 0.40, significantly higher than current theoretical predictions. As well as classifying the NEOs, we have investigated color trends with size and orbit. We see a general trend for larger silicate objects to have shallower absorption bands but find no significant difference in the distribution of taxonomic classes at small and large sizes. Our data clearly show that different taxonomic classes tend to occupy different regions of (a, e) space. By comparing our data with current model predictions for NEO dynamical evolution we see that Q-, R-, and V-type NEOs tend to have orbits associated with “fast track” delivery from the main belt, whereas S-type NEOs tend to have orbits associated with “slow track” delivery. This outcome would be expected if space weathering occurs on time scales of >106 years.  相似文献   

7.
H. Scholl  F. Marzari 《Icarus》2005,175(2):397-408
In this paper we explore the dynamical stability of the Mars Trojan region applying mainly Laskar's Frequency Map Analysis. This method yields the chaotic diffusion rate of orbits and allows to determine the most stable regions. It also gives the frequencies which are responsible for the instability of orbits. The most stable regions are found for inclinations between about 15° and 30°. For inclinations smaller than 15°, we confirm, by applying a synthetic secular theory, that the secular resonances ν3, ν4, ν13, ν14 rapidly excite asteroid orbits within a few Myrs, or even faster. The asteroids are removed from the Trojan region after a close encounter with Mars. For large inclinations, the secular resonance ν5 clears a small region around 30° while the Kozai resonance rapidly removes bodies for inclinations larger than 35°. The dynamical lifetimes of the three L5 Trojans, (5261) Eureka, 1998 VF31, 2001 DH47, and the only L4 Trojan 1999 UJ7 are determined by numerically integrating clouds of corresponding clones over the age of the Solar System. All four Trojans reside in the most stable region with smallest diffusion coefficients. Their dynamical half-lifetime is of the order of the age of the Solar System. The Yarkovsky force has little effect on the known Trojans but for bodies smaller than about 1-5 m the drag is strong enough to destabilize Trojans on a timescale shorter than 4.5 Gyr.  相似文献   

8.
The infrared AOTF spectrometer is a part of the SPICAM experiment onboard the Mars-Express ESA mission. The instrument has a capability of solar occultations and operates in the spectral range of 1-1.7 μm with a spectral resolution of ∼3.5 cm−1. We report results from 24 orbits obtained during MY28 at Ls 130°-160°, and the latitude range of 40°-55° N. For these orbits the atmospheric density from 1.43 μm CO2 band, water vapor mixing ratio based on 1.38 μm absorption, and aerosol opacities were retrieved simultaneously. The vertical resolution of measurements is better than 3.5 km. Aerosol vertical extinction profiles were obtained at 10 wavelengths in the altitude range from 10 to 60 km. The interpretation using Mie scattering theory with adopted refraction indices of dust and H2O ice allows to retrieve particle size (reff∼0.5-1 μm) and number density (∼1 cm−3 at 15-30 km) profiles. The haze top is generally below 40 km, except the longitude range of 320°-50° E, where high-altitude clouds at 50-60 km were detected. Optical properties of these clouds are compatible with ice particles (effective radius reff=0.1-0.3 μm, number density N∼10 cm−3) distributed with variance νeff=0.1-0.2 μm. The vertical optical depth of the clouds is below 0.001 at 1 μm. The atmospheric density profiles are retrieved from CO2 band in the altitude range of 10-90 km, and H2O mixing ratio is determined at 15-50 km. Unless a supersaturation of the water vapor occurs in the martian atmosphere, the H2O mixing ratio indicates ∼5 K warmer atmosphere at 25-45 km than predicted by models.  相似文献   

9.
Matija ?uk  Joseph A. Burns 《Icarus》2005,176(2):418-431
The Yarkovsky force, produced when thermal radiation is re-emitted asymmetrically, causes significant orbital evolution of asteroids in the 10 m-10 km size range. When acting on a non-spherical body, the momentum carried by this radiation generally produces a torque, called the YORP effect, which may be important in re-orienting asteroidal spins. Here we explore a related effect, the “binary YORP” (BYORP), that can modify the orbit of a synchronously rotating secondary in a binary system. It arises because a locked secondary is effectively an asymmetric appendage of the primary. It should be particularly important for Near-Earth Asteroids (NEAs) owing to their small sizes, proximity to the Sun, and benign collisional environment. To estimate BYORP's strength, we subjected 100 random Gaussian spheroids to the thermal radiation model of Rubincam (2000, Radiative spin-up and spin-down of small asteroids, Icarus, 148, 2-11). For most shapes, a significant torque arose on the secondary's orbit, typically modifying the orbit's size, eccentricity and inclination in less than 105 years, for components of 1 and 0.3 km radii, separated by 2 km, at 1 AU, each of density 1750 kg m−3. Together YORP and BYORP are capable of synchronizing secondaries and circularizing orbits, making tidal dissipation unnecessary to explain the evolved state of observed NEA pairs. However, BYORP's rapid timescale poses a problem for the abundance of observed NEA binaries, since their formation rate is thought to be much slower. We consider and reject the following resolutions of this quandary: (i) the approximation using Gaussian spheroids inadequately models YORP; (ii) most secondaries are not synchronous, but inhabit other spin-orbit resonances (very unlikely); (iii) tidal dissipation is much more efficient than previously estimated, and thus capable of stabilizing observed systems; and (iv) moderately close encounters with planets can re-orient secondaries, turning BYORP into a slower, random-walk process. Finally, we speculate that most observed binary NEAs are in a stable state in which the obliquity-changing torques of YORP (acting on the primary) and BYORP cancel out, and that those systems must be close to 55° inclination, where the momentum-changing torques of both YORP and BYORP tend to be very small. Some retrograde systems might develop such that the nodes precess at a Sun-synchronous rate, while some prograde ones might move into the “evection” resonance. All three of these hypotheses can be tested directly by comparison with the i, Ω and ? observed for NEA binaries.  相似文献   

10.
In 2003, we initiated a long-term Adaptive Optics campaign to study the orbit of various main-belt asteroidal systems. Here we present a consistent solution for the mutual orbits of four binary systems: 22 Kalliope, 45 Eugenia, 107 Camilla and 762 Pulcova. With the exception of 45 Eugenia, we did not detect any additional satellites around these systems although we have the capability of detecting a loosely-bound fragment (located at 1/4×RHill) that is ∼40 times smaller in diameter than the primary. The common characteristic of these mutual orbits is that they are roughly circular. Three of these binary systems belong to a C-“group” taxonomic class. Our estimates of their bulk densities are consistently lower (∼1 g/cm3) than their associated meteorite analogs, suggesting an interior porosity of 30-50% (taking CI-CO meteorites as analogs). 22 Kalliope, a W-type asteroid, has a significantly higher bulk density of ∼3 g/cm3, derived based on IRAS radiometric size measurement. We compare the characteristics of these orbits in the light of tidal-effect evolution.  相似文献   

11.
The outer region of the jovian system between ∼50 and 300 jovian radii from the planet is found to be the host of a previously unknown dust population. We used the data from the dust detector aboard the Galileo spacecraft collected from December 1995 to April 2001 during Galileo's numerous traverses of the outer jovian system. Analyzing the ion amplitudes, calibrated masses and speeds of grains, and impact directions, we found about 100 individual events fully compatible with impacts of grains moving around Jupiter in bound orbits. These grains have moderate eccentricities and a wide range of inclinations—from prograde to retrograde ones. The radial number density profile of the micrometer-sized dust is nearly flat between about 50 and 300 jovian radii. The absolute number density level (∼10 km−3 with a factor of 2 or 3 uncertainty) surpasses by an order of magnitude that of the interplanetary background. We identify the sources of the bound grains with outer irregular satellites of Jupiter. Six outer tiny moons are orbiting the planet in prograde and fourteen in retrograde orbits. These moons are subject to continuous bombardment by interplanetary micrometeoroids. Hypervelocity impacts create ejecta, nearly all of which get injected into circumjovian space. Our analytic and numerical study of the ejecta dynamics shows that micrometer-sized particles from both satellite families, although strongly perturbed by solar tidal gravity and radiation pressure, would stay in bound orbits for hundreds of thousands of years as do a fraction of smaller grains, several tenths of a micrometer in radius, ejected from the prograde moons. Different-sized ejecta remain confined to spheroidal clouds embracing the orbits of the parent moons, with appreciable asymmetries created by the radiation pressure and solar gravity perturbations. Spatial location of the impacts, mass distribution, speeds, orbital inclinations, and number density of dust derived from the data are all consistent with the dynamical model.  相似文献   

12.
F. Roig  D. Nesvorný  R. Gil-Hutton 《Icarus》2008,194(1):125-136
V-type asteroids are bodies whose surfaces are constituted of basalt. In the Main Asteroid Belt, most of these asteroids are assumed to come from the basaltic crust of Asteroid (4) Vesta. This idea is mainly supported by (i) the fact that almost all the known V-type asteroids are in the same region of the belt as (4) Vesta, i.e., the inner belt (semi-major axis 2.1<a<2.5 AU), (ii) the existence of a dynamical asteroid family associated to (4) Vesta, and (iii) the observational evidence of at least one large craterization event on Vesta's surface. One V-type asteroid that is difficult to fit in this scenario is (1459) Magnya, located in the outer asteroid belt, i.e., too far away from (4) Vesta as to have a real possibility of coming from it. The recent discovery of the first V-type asteroid in the middle belt (2.5<a<2.8 AU), (21238) 1995WV7 [Binzel, R.P., Masi, G., Foglia, S., 2006. Bull. Am. Astron. Soc. 38, 627; Hammergren, M., Gyuk, G., Puckett, A., 2006. ArXiv e-print, astro-ph/0609420], located at ∼2.54 AU, raises the question of whether it came from (4) Vesta or not. In this paper, we present spectroscopic observations indicating the existence of another V-type asteroid at ∼2.53 AU, (40521) 1999RL95, and we investigate the possibility that these two asteroids evolved from the Vesta family to their present orbits by a semi-major axis drift due to the Yarkovsky effect. The main problem with this scenario is that the asteroids need to cross the 3/1 mean motion resonance with Jupiter, which is highly unstable. Combining N-body numerical simulations of the orbital evolution, that include the Yarkovsky effect, with Monte Carlo models, we compute the probability that an asteroid of a given diameter D evolves from the Vesta family and crosses over the 3/1 resonance, reaching a stable orbit in the middle belt. Our results indicate that an asteroid like (21238) 1995WV7 has a low probability (∼1%) of having evolved through this mechanism due to its large size (D∼5 km), because the Yarkovsky effect is not sufficiently efficient for such large asteroids. However, the mechanism might explain the orbits of smaller bodies like (40521) 1999RL95 (D∼3 km) with ∼70-100% probability, provided that we assume that the Vesta family formed ?3.5 Gy ago. We estimate the debiased population of V-type asteroids that might exist in the same region as (21238) and (40521) (2.5<a?2.62 AU) and conclude that about 10 to 30% of the V-type bodies with D>1 km may come from the Vesta family by crossing over the 3/1 resonance. The remaining 70-90% must have a different origin.  相似文献   

13.
Saturn's diffuse E ring is the largest ring of the Solar System and extends from about (Saturn radius RS=60,330 km) to at least encompassing the icy moons Mimas, Enceladus, Tethys, Dione, and Rhea. After Cassini's insertion into her saturnian orbit in July 2004, the spacecraft performed a number of equatorial as well as steep traversals through the E ring inside the orbit of the icy moon Dione. Here, we report about dust impact data we obtained during 2 shallow and 6 steep crossings of the orbit of the dominant ring source—the ice moon Enceladus. Based on impact data of grains exceeding 0.9 μm we conclude that Enceladus feeds a torus populated by grains of at least this size along its orbit. The vertical ring structure at agrees well with a Gaussian with a full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM at is due to three-body interactions of dust grains ejected by Enceladus' recently discovered ice volcanoes with the moon during their first orbit. We find that particles with initial speeds between 225 and 235 m s−1 relative to the moon's surface dominate the vertical distribution of dust. Particles with initial velocities exceeding the moon's escape speed of 207 m s−1 but slower than 225 m s−1 re-collide with Enceladus and do not contribute to the ring particle population. We find the peak number density to range between 16×10−2 m−3 and 21×10−2 m−3 for grains larger 0.9 μm, and 2.1×10−2 m−3 and 7.6×10−2 m−3 for grains larger than 1.6 μm. Our data imply that the densest point is displaced outwards by at least with respect of the Enceladus orbit. This finding provides direct evidence for plume particles dragged outwards by the ambient plasma. The differential size distribution for grains >0.9 μm is described best by a power law with slopes between 4 and 5. We also obtained dust data during ring plane crossings in the vicinity of the orbits of Mimas and Tethys. The vertical distribution of grains >0.8 μm at Mimas orbit is also well described by Gaussian with a FWHM of ∼5400 km and displaced southwards by ∼1200 km with respect to the geometrical equator. The vertical distribution of ring particles in the vicinity of Tethys, however, does not match a Gaussian. We use the FWHM values obtained from the vertical crossings to establish a 2-dimensional model for the ring particle distribution which matches our observations during vertical and equatorial traversals through the E ring.  相似文献   

14.
We report radar, photometric, and spectroscopic observations of near-Earth Asteroid (136617) 1994 CC. The radar measurements were obtained at Goldstone (8560 MHz, 3.5 cm) and Arecibo (2380 MHz, 12.6 cm) on 9 days following the asteroid’s approach within 0.0168 AU on June 10, 2009. 1994 CC was also observed with the Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) on May 21 and June 1-3. Visible-wavelength spectroscopy was obtained with the 5-m Hale telescope at Palomar on August 25. Delay-Doppler radar images reveal that 1994 CC is a triple system; along with (153591) 2001 SN263, this is only the second confirmed triple in the near-Earth population. Photometry obtained with PROMPT yields a rotation period for the primary P = 2.38860 ± 0.00009 h and a lightcurve amplitude of ∼0.1 mag suggesting a shape with low elongation. Hale telescope spectroscopy indicates that 1994 CC is an Sq-class object. Delay-Doppler radar images and shape modeling reveal that the primary has an effective diameter of 0.62 ± 0.06 km, low pole-on elongation, few obvious surface features, and a prominent equatorial ridge and sloped hemispheres that closely resemble those seen on the primary of binary near-Earth Asteroid (66391) 1999 KW4. Detailed orbit fitting reported separately by Fang et al. (Fang, J., Margot, J.-L., Brozovic, M., Nolan, M.C., Benner, L.A.M., Taylor, P.A. [2011]. Astron. J. 141, 154-168) gives a mass of the primary of 2.6 × 1011 kg that, coupled with the effective diameter, yields a bulk density of 2.1 ± 0.6 g cm−3. The images constrain the diameters of the inner and outer satellites to be 113 ± 30 m and 80 ± 30 m, respectively. The inner satellite has a semimajor axis of ∼1.7 km (∼5.5 primary radii), an orbital period of ∼30 h, and its Doppler dispersion suggests relatively slow rotation, 26 ± 12 h, consistent with spin-orbit lock. The outer satellite has an orbital period of ∼9 days and a rotation period of 14 ± 7 h, establishing that the rotation is not spin-orbit locked. Among all binary and triple systems observed by radar, at least 25% (7/28) have a satellite that rotates more rapidly than its orbital period. This suggests that asynchronous configurations with Protation < Porbital are relatively common among multiple systems in the near-Earth population. 1994 CC’s outer satellite has an observed maximum separation from the primary of ∼5.7 km (∼18.4 primary radii) that is the largest separation relative to primary radius seen to date among all 36 known binary and triple NEA systems. 1994 CC, (153591) 2001 SN263, and 1998 ST27 are the only triple and binary systems known with satellite separations >10 primary radii, suggesting either a detection bias, or that such widely-separated satellites are relatively uncommon in NEA multiple systems.  相似文献   

15.
We show that the peak velocity of Jupiter’s visible-cloud-level zonal winds near 24°N (planetographic) increased from 2000 to 2008. This increase was the only change in the zonal velocity from 2000 to 2008 for latitudes between ±70° that was statistically significant and not obviously associated with visible weather. We present the first automated retrieval of fast (∼130 m s−1) zonal velocities at 8°N planetographic latitude, and show that some previous retrievals incorrectly found slower zonal winds because the eastward drift of the dark projections (associated with 5-μm hot spots) “fooled” the retrieval algorithms.We determined the zonal velocity in 2000 from Cassini images from NASA’s Planetary Data System using a global method similar to previous longitude-shifting correlation methods used by others, and a new local method based on the longitudinal average of the two-dimensional velocity field. We obtained global velocities from images acquired in May 2008 with the Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). Longer-term variability of the zonal winds is based on comparisons with published velocities based on 1979 Voyager 2 and 1995-1998 HST images. Fluctuations in the zonal wind speeds on the order of 10 m s−1 on timescales ranging from weeks to months were found in the 1979 Voyager 2 and the 1995-1998 HST velocities. In data separated by 10 h, we find that the east-west velocity uncertainty due to longitudinal fluctuations are nearly 10 m s−1, so velocity fluctuations of 10 m s−1 may occur on timescales that are even smaller than 10 h. Fluctuations across such a wide range of timescales limit the accuracy of zonal wind measurements. The concept of an average zonal velocity may be ill-posed, and defining a “temporal mean” zonal velocity as the average of several zonal velocity fields spanning months or years may not be physically meaningful.At 8°N, we use our global method to find peak zonal velocities of ∼110 m s−1 in 2000 and ∼130 m s−1 in 2008. Zonal velocities from 2000 Cassini data produced by our local and global methods agree everywhere, except in the vicinity of 8°N. There, the local algorithm shows that the east-west velocity has large variations in longitude; vast regions exceed ∼140 m s−1. Our global algorithm, and all of the velocity-extraction algorithms used in previously-published studies, found the east-west drift velocities of the visible dark projections, rather than the true zonal velocity at the visible-cloud level. Therefore, the apparent increase in zonal winds between 2000 and 2008 at 8°N is not a true change in zonal velocity.At 7.3°N, the Galileo probe found zonal velocities of 170 m s−1 at the 3-bar level. If the true zonal velocity at the visible-cloud level at this latitude is ∼140 m s−1 rather than ∼105 m s−1, then the vertical zonal wind shear is much less than the currently accepted value.  相似文献   

16.
There are approximately 5000 known asteroids in the Hungaria orbital space, a region defined by orbits with high inclination (16° < i < 34°), low eccentricities (e < 0.18), and semi-major axes 1.78 < a < 2.0 AU. We argue that this region is populated by a large number of asteroids formed after a catastrophic collision involving (434) Hungaria, the presumptive largest fragment of the Hungaria collisional family. The remaining objects form a background population that share orbital characteristics with the family members. Due to the general dynamic stability of the region, it is likely that most asteroids in Hungaria space (the Hungaria “group”) have been in this region since the formation of the Solar System or at least since the planets assumed their current orbital configuration. Our examination of the Hungaria group included comparing rotation rates, taxonomic classification, and orbital dynamics to determine the characteristics of the family and background populations. We first found there is an excess of slow rotators among the group but, otherwise, the distribution of spin frequencies is essentially uniform, i.e., that a plot of the cumulative number of objects over the range of 1 d−1 < f < 9 d−1 is nearly a straight line or, put another way, if the distribution over the range is binned by equal intervals of f (1-2 d−1, 2-3 d−1, etc.), the number of objects in each bin is statistically the same.There is a distinct family within the Hungaria group, centered at a semi-major axis of 1.940 AU, with a dispersion range that increases with decreasing size of members, as expected of an evolved collisional family. The larger members with well-determined taxonomic class, including (434) Hungaria itself, have flat spectra, mostly likely type E or similar. The degree of spreading versus size of family members is consistent with that expected from Yarkovsky thermal drift in roughly 0.5 Gyr, suggesting that age for the family. The Asteroid (434) Hungaria is displaced in semi-major axis by 0.004 AU from the center of the Hungaria family. The collision event that produced the family should not have left the largest body displaced by more than 0.001 AU from the original orbit, thus we infer that the displacement of (434) Hungaria is mainly due to Yarkovsky drift, and is consistent with the expected drift for that size body in ∼0.5 Gyr. Below ∼1.93 AU heliocentric distance the Hungaria family is perturbed by at least two secular resonances, 2g − g5 − g6 and one of the family of 4th or 6th order secular resonances near s ∼ −22.25 ″/year. Their combined effect results in larger inclination dispersion of the family members.  相似文献   

17.
During its cruise phase, prior to encountering Jupiter, the Cosmic Dust Analyser (CDA) onboard the Cassini spacecraft returned time of flight mass spectra (TOF MS) of two interplanetary dust particles. Both particles were found to be iron-rich, with possible traces of hydrogen, carbon, nickel, chromium, manganese, titanium, vanadium and minor silicates. Carbon, hydrogen, oxygen and potassium are also present as possible contaminants of the impact target of CDA. Silicates and magnesium do not feature predominantly in the spectra; this is surprising considering the expected dominance of silicate-rich minerals in interplanetary dust particles. The particle masses are and . The corresponding radii ranges for the particles, assuming densities from 7874-2500 kg m−3 are 0.7-4 μm and 2.6-6.8 μm, respectively. With the same density assumptions the β values (ratio of radiation pressure to gravitational force) are estimated as 0.027-0.21 and 0.016-0.06 respectively, allowing possible orbits to be calculated. The resulting orbits are bound and prograde with semi-major axes, eccentricities and inclinations in the region of 0.3-1.26 AU, 0.4-1.0 and 0-60° for the first particle and 0.8-2.5 AU, 0.2-0.9 and 0-30° for the second. The more probable orbits within these ranges indicate that the first particle is in an Aten-like orbit, whilst the second particle is in an Apollo-like orbit, despite both grains having very similar, predominantly metallic compositions. Other possible orbital solutions for both particles encompass orbits which more closely resemble those of Jupiter-family comets.  相似文献   

18.
We present a study of the equatorial region of Jupiter, between latitudes ∼15°S and ∼15°N, based on Cassini ISS images obtained during the Jupiter flyby at the end of 2000, and HST images acquired in May and July 2008. We examine the structure of the zonal wind profile and report the detection of significant longitudinal variations in the intensity of the 6°N eastward jet, up to 60 m s−1 in Cassini and HST observations. These longitudinal variations are, in the HST case, associated with different cloud morphology. Photometric and radiative transfer analysis of the cloud features used as tracers in HST images show that at most there is only a small height difference, no larger than ∼0.5-1 scale heights, between the slow (∼100 m s−1) and fast (∼150 m s−1) moving features. This suggests that speed variability at 6°N is not dominated by vertical wind shears but instead we propose that Rossby wave activity is the responsible for the zonal variability. Removing this variability, we find that Jupiter’s equatorial jet is actually symmetric relative to equator with two peaks of ∼140-150 m s−1 located at latitudes 6°N and 6°S and at a similar pressure level. We also study the local dynamics of particular equatorial features such as several dark projections associated with 5 μm hot spots and a large, long-lived feature called the White Spot (WS) located at 6°S. Convergent flow at the dark projections appears to be a characteristic which depends on the particular morphology and has only been detected in some cases. The internal flow field in the White Spot indicates that it is a weakly rotating quasi-equatorial anticyclone relative to the ambient meridionally sheared flow.  相似文献   

19.
We have measured the internal velocity field in jovian synoptic-scale cyclones and anticyclones by tracking cloud elements in very high spatial resolution images obtained by the Voyager 1 and 2 (in 1979) and Galileo (1996-2000) spacecrafts. In total we have studied 24 different closed vortices (6 cyclones, 18 anticyclones) spanning a latitude range from ∼60° N to 60° S and with East-West sizes larger than ∼2000 km. The tangential component of the velocity as a function of the distance to the vortex center and position angle is used to retrieve the vorticity field. We find that the velocity increases in all the vortices from a nearly quiescent center to a maximum at the vortex periphery, with a record of about 180 m s−1 for the GRS. The vorticity of cyclones and anticyclones increases in general toward their periphery with absolute values in the range from ∼2-14×10−5 s−1. There is a marked tendency to increase the vortices vorticity with their latitude location. However the vorticity does not depend on the vortex size, circulation sense, or ambient background meridional wind shear. The vortex Rossby number ranges from ∼0.2 to 0.5. A study of the interaction between the Great Red Spot with other vortices show that the GRS does not change its vorticity upon their absorption. The two White Ovals mergers showed contradictory results, with greater vorticity in the case of BE, but lower vorticity in the case of BA, although data are poorer for this last case. We present the case of a short lived but large coherent cyclone at −59° that was embedded in a weakly anticyclone wind shear domain. We show that jovian vortices do not follow the simple Kida vortex relationship between vorticity and aspect ratio as it has been previously suggested.  相似文献   

20.
Pawe? Wajer 《Icarus》2010,209(2):488-493
We study the dynamical evolution of Asteroids (164207) 2004 GU9 and 2006 FV35, which are currently Earth quasi-satellites (QS). Our analysis is based on numerical computation of their orbits, and we also applied the theory of co-orbital motion developed in Wajer (Wajer, P. [2009]. Icarus 200, 147-153) to describe and analyze the objects’ dynamics. 2004 GU9 stays as an Earth QS for about a 1000 years. In the present epoch it is in the middle of its stay in this regime. After leaving the QS orbit near 2600 this asteroid will move inside the Earth’s co-orbital region on a regular horseshoe (HS) orbit for a few 1000 years. Later, either HS-QS or HS-P transitions are possible, where P means “passing”. Although 2004 GU9 moves primarily under the influence of the Sun and Earth, Venus plays a significant role in destabilizing the object’s orbit. Our analysis showed that the guiding center of 2006 FV35 moves deep inside the averaged potential well, and since the asteroid’s argument of perihelion precesses at a rate of approximately , it prevents the QS state begin left for a long period of time; consequently the asteroid has occupied this state for about 104 years and will stay in this orbit for about 800 more years. Near 2800 the asteroid’s close approach with Venus will cause it to exit the QS state, but probably it will still be moving inside the Earth’s co-orbital region and will experience transitions between HS, TP (tadpole) and P types of motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号