首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The large amount of semantically rich mobility data becoming available in the era of big data has led to a need for new trajectory similarity measures. In the context of multiple‐aspect trajectories, where mobility data are enriched with several semantic dimensions, current state‐of‐the‐art approaches present some limitations concerning the relationships between attributes and their semantics. Existing works are either too strict, requiring a match on all attributes, or too flexible, considering all attributes as independent. In this article we propose MUITAS, a novel similarity measure for a new type of trajectory data with heterogeneous semantic dimensions, which takes into account the semantic relationship between attributes, thus filling the gap of the current trajectory similarity methods. We evaluate MUITAS over two real datasets of multiple‐aspect social media and GPS trajectories. With precision at recall and clustering techniques, we show that MUITAS is the most robust measure for multiple‐aspect trajectories.  相似文献   

2.
With fast growth of all kinds of trajectory datasets, how to effectively manage the trajectory data of moving objects has received a lot of attention. This study proposes a spatio‐temporal data integrated compression method of vehicle trajectories based on stroke paths coding compression under the road stroke network constraint. The road stroke network is first constructed according to the principle of continuous coherence in Gestalt psychology, and then two types of Huffman tree—a road strokes Huffman tree and a stroke paths Huffman tree—are built, based respectively on the importance function of road strokes and vehicle visiting frequency of stroke paths. After the vehicle trajectories are map matched to the spatial paths in the road network, the Huffman codes of the road strokes and stroke paths are used to compress the trajectory spatial paths. An opening window algorithm is used to simplify the trajectory temporal data depicted on a time–distance polyline by setting the maximum allowable speed difference as the threshold. Through analysis of the relative spatio‐temporal relationship between the preceding and latter feature tracking points, the spatio‐temporal data of the feature tracking points are all converted to binary codes together, accordingly achieving integrated compression of trajectory spatio‐temporal data. A series of comparative experiments between the proposed method and representative state‐of‐the‐art methods are carried out on a real massive taxi trajectory dataset from five aspects, and the experimental results indicate that our method has the highest compression ratio. Meanwhile, this method also has favorable performance in other aspects: compression and decompression time overhead, storage space overhead, and historical dataset training time overhead.  相似文献   

3.
Considering the attempts to model spatiotemporal topological relationships between moving object trajectories, the conceptual and computational framework for moving objects along a road network has not received much attention. This paper aims to draw an improved model based on Region Connection Calculus (RCC) theory to represent the spatiotemporal topological relationships between moving object trajectories along road networks. This paper first uses a dimension reduction method based on a linear-reference transformation to model the moving object trajectories segments, and then defines new time–connection and space–connection relations between two trajectory segments. On this basis, the paper proposes an extension to the RCC-based spatiotemporal binary relationship set so that the combined semantics of the spatiotemporal predicates can be described completely. A case study was carried out using Floating Car Data in Guangzhou city. The computational results show that in a real application, the occurrence frequencies of the RCC-based binary relationships are distributed nonuniformly and the semantics of some binary relationships with the highest occurrence are coarse. Therefore, the partition of the spatiotemporal connection relations and the finer aspects of the spatiotemporal relationship model may require further research work.  相似文献   

4.
Estimation of forest aboveground biomass (AGB) is informative of the role of forest ecosystems in local and global carbon budgets. There is a need to retrospectively estimate biomass in order to establish a historical baseline and enable reporting of change. In this research, we used temporal spectral trajectories to inform on forest successional development status in support of modelling and mapping of historic AGB for Mediterranean pines in central Spain. AGB generated with ground plot data from the Spanish National Forest Inventory (NFI), representing two collection periods (1990 and 2000), are linked with static and dynamic spectral data as captured by Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors over a 25 year period (1984–2009). The importance of forest structural complexity on the relationship between AGB and spectral vegetation indices is revealed by the analysis of wavelet transforms. Two-dimensional (2D) wavelet transforms support the identification of spectral trajectory patterns of forest stands that in turn, are associated with traits of individual NFI plots, using a flexible algorithm sensitive to capturing time series similarity. Single-date spectral indices, temporal trajectories, and temporal derivatives associated with succession are used as input variables to non-parametric decision trees for modelling, estimation, and mapping of AGB and carbon sinks over the entire study area. Results indicate that patterns of change found in Normalized Difference Vegetation Index (NDVI) values are associated and relate well to classes of forest AGB. The Tasseled Cap Angle (TCA) index was found to be strongly related with forest density, although the related patterns of change had little relation with variability in historic AGB. By scaling biomass models through small (∼2.5 ha) spatial objects defined by spectral homogeneity, the AGB dynamics in the period 1990–2000 are mapped (70% accuracy when validated with plot values of change), revealing an increase of 18% in AGB irregularly distributed over 814 km2 of pines. The accumulation of C calculated in AGB was on average 0.65 t ha−1 y−1, equivalent to a fixation of 2.38 t ha−1 y−1 of carbon dioxide.  相似文献   

5.
This article studies the analysis of moving object data collected by location‐aware devices, such as GPS, using graph databases. Such raw trajectories can be transformed into so‐called semantic trajectories, which are sequences of stops that occur at “places of interest.” Trajectory data analysis can be enriched if spatial and non‐spatial contextual data associated with the moving objects are taken into account, and aggregation of trajectory data can reveal hidden patterns within such data. When trajectory data are stored in relational databases, there is an “impedance mismatch” between the representation and storage models. Graphs in which the nodes and edges are annotated with properties are gaining increasing interest to model a variety of networks. Therefore, this article proposes the use of graph databases (Neo4j in this case) to represent and store trajectory data, which can thus be analyzed at different aggregation levels using graph query languages (Cypher, for Neo4j). Through a real‐world public data case study, the article shows that trajectory queries are expressed more naturally on the graph‐based representation than over the relational alternative, and perform better in many typical cases.  相似文献   

6.
In order to better understand the movement of an object with respect to a region, we propose a formal model of the evolving spatial relationships that transition between local topologies with respect to a trajectory and a region as well as develop a querying mechanism to analyze movement patterns. We summarize 12 types of local topologies built on trajectory‐region intersections, and derive their transition graph; then we capture and model evolving local topologies with two types of trajectory‐region strings, a movement string and a stop‐move string. The stop‐move string encodes the stop information further during a trajectory than the movement string. Such a string‐format expression of trajectory‐region movement, although conceptually simple, carries unprecedented information for effectively interpreting how trajectories move with respect to regions. We also design the corresponding Finite State Automations for a movement string as well as a stop‐move string, which are used not only to recognize the language of trajectory‐region strings, but also to deal effectively with trajectory‐region pattern queries. When annotated with the time information of stops and intersections, a trajectory‐region movement snapshot and its evolution during a time interval can be inferred, and even the relationships among trajectories with respect to the same region can be explored.  相似文献   

7.
MASTER: A multiple aspect view on trajectories   总被引:1,自引:0,他引:1  
For many years trajectory data have been treated as sequences of space‐time points or stops and moves. However, with the explosion of the Internet of Things and the flood of big data generated on the Internet, such as weather channels and social network interactions, which can be used to enrich mobility data, trajectories become more and more complex, with multiple and heterogeneous data dimensions. The main challenge is how to integrate all this information with trajectories. In this article we introduce a new concept of trajectory, called multiple aspect trajectory, propose a robust conceptual and logical data model that supports a vast range of applications, and, differently from state‐of‐the‐art methods, we propose a storage solution for efficient multiple aspect trajectory queries. The main strength of our data model is the combination of simplicity and expressive power to represent heterogeneous aspects, ranging from simple labels to complex objects. We evaluate the proposed model in a tourism scenario and compare its query performance against the state‐of‐the‐art spatio‐temporal database SECONDO extension for symbolic trajectories.  相似文献   

8.
Geocoding systems typically use more than one geographic reference dataset to improve match rates and spatial accuracy, resulting in multiple candidate geocodes from which the single “best” result must be selected. Little scientific evidence exists for formalizing this selection process or comparing one strategy to another, leading to the approach used in existing systems which we term the hierarchy‐based criterion: place the available reference data layers into qualitative, static, and in many cases, arbitrary hierarchies and attempt a match in each layer, in order. The first non‐ambiguous match with suitable confidence is selected and returned as output. This approach assumes global relationships of relative accuracy between reference data layers, ignoring local variations that could be exploited to return more precise geocodes. We propose a formalization of the selection criteria and present three alternative strategies which we term the uncertainty‐, gravitationally‐, and topologically‐based strategies. The performance of each method is evaluated against two ground truth datasets of nationwide GPS points to determine any resulting spatial improvements. We find that any of the three new methods improves on current practice in the majority of cases. The gravitationally‐ and topologically‐based approaches offer improvement over a simple uncertainty‐based approach in cases with specific characteristics.  相似文献   

9.
Several works have been proposed in the last few years for raw trajectory data analysis, and some attempts have been made to define trajectories from a more semantic point of view. Semantic trajectory data analysis has received significant attention recently, but the formal definition of semantic trajectory, the set of aspects that should be considered to semantically enrich trajectories and a conceptual data model integrating these aspects from a broad sense is still missing. This article presents a semantic trajectory conceptual data model named CONSTAnT, which defines the most important aspects of semantic trajectories. We believe that this model will be the foundation for the design of semantic trajectory databases, where several aspects that make a trajectory “semantic” are taken into account. The proposed model includes the concepts of semantic subtrajectory, semantic points, geographical places, events, goals, environment and behavior, to create a general concept of semantic trajectory. The proposed model is the result of several years of work by the authors in an effort to add more semantics to raw trajectory data for real applications. Two application examples and different queries show the flexibility of the model for different domains.  相似文献   

10.
Analyzing the spatial behaviors of moving-point objects (MPOs) and discovering their movement patterns have been of great interest to the geographic information science community recently. These interests can be explored through analyzing similarities in the MPO trajectories. Because movements of objects take place in various contexts, their trajectories are also highly influenced by such contexts. Therefore, it is essential to fully understand the contexts and to realize how they can be incorporated into movement analysis. This article first proposes a taxonomy for contexts. Then, a modified version of dynamic time warping called context-based dynamic time warping (CDTW) is introduced, to contextually assess the multidimensional weighted similarities of trajectories. Ultimately, the results of similarity searches are utilized in discovering the relative movement patterns of the MPOs. To evaluate the performance and effectiveness of our proposed CDTW method, we run several experiments on real datasets that were obtained from commercial airplanes in a constrained Euclidean space, taking into account contextual information. Specifically, these experiments were conducted to explore the role of contexts and their interactions in similarity measures of trajectories. The results yielded the robustness of CDTW method in quantifying the commonalities of trajectories and discovering movement patterns with 80% accuracy. Moreover, the results revealed the importance of exploiting contextual information because it can enhance and restrict movements.  相似文献   

11.
Density‐based clustering algorithms such as DBSCAN have been widely used for spatial knowledge discovery as they offer several key advantages compared with other clustering algorithms. They can discover clusters with arbitrary shapes, are robust to noise, and do not require prior knowledge (or estimation) of the number of clusters. The idea of using a scan circle centered at each point with a search radius Eps to find at least MinPts points as a criterion for deriving local density is easily understandable and sufficient for exploring isotropic spatial point patterns. However, there are many cases that cannot be adequately captured this way, particularly if they involve linear features or shapes with a continuously changing density, such as a spiral. In such cases, DBSCAN tends to either create an increasing number of small clusters or add noise points into large clusters. Therefore, in this article, we propose a novel anisotropic density‐based clustering algorithm (ADCN). To motivate our work, we introduce synthetic and real‐world cases that cannot be handled sufficiently by DBSCAN (or OPTICS). We then present our clustering algorithm and test it with a wide range of cases. We demonstrate that our algorithm can perform equally as well as DBSCAN in cases that do not benefit explicitly from an anisotropic perspective, and that it outperforms DBSCAN in cases that do. Finally, we show that our approach has the same time complexity as DBSCAN and OPTICS, namely O(n log n) when using a spatial index and O(n2) otherwise. We provide an implementation and test the runtime over multiple cases.  相似文献   

12.
Many real world applications today are built on analyses of movement and related features. Examples of such applications include transportation management, urban planning, tourism services, and animal migration monitoring, among others. Recent database modeling and management research prototypes have the capability to store and manipulate movement data in terms of point or region geometries that evolve over time (moving point or moving and deforming region). This captures the spatio‐temporal trace left by a moving object, but ignores its links with non‐geometric information that enable a semantic interpretation of the movement of moving objects. The concept of trajectory has been introduced to express a more semantic understanding of movement, taking it closer to the perception of applications. This article describes a framework for a semantics‐oriented structuring, modeling and querying of trajectory data. The framework relies on the definition of trajectory‐related ontologies, addressing domain‐independent and application‐specific geometric and semantic facets. Last we briefly discuss how the proposed approach has been applied for a traffic management application.  相似文献   

13.
Efficient processing of spatiotemporal queries over moving objects with uncertainty has become imperative due to the increasing need for real-time information in highly dynamic environments. Most of the existing approaches focus on designing an index structure for managing moving objects with uncertainty and then utilize it to improve the query performance. All the proposed indexes, however, have their own limitations. In this paper, we devote to developing an efficient index, named the R lsd -tree, to index moving objects with uncertain speed and direction varying within respective known ranges. We design several pruning criteria combined with the R lsd -tree to answer the probabilistic range queries. Moreover, two models, the sampling-based probability model and the ER-based probability model, are proposed to quantify the possibility of each object being the query result. Finally, a thorough experimental evaluation is conducted to show the merits of the proposed techniques.  相似文献   

14.
Satellite sensors have provided new datasets for monitoring regional and urban air quality. Satellite sensors provide comprehensive geospatial information on air quality with both qualitative remotely sensed imagery and quantitative data, such as aerosol optical depth which is the basic unknown parameter for any atmospheric correction method in the pre‐processing of satellite imagery. This article presents a new method for retrieving aerosol optical thickness directly from satellite remotely sensed imagery for short wavelength bands in which atmospheric scattering is the dominant contribution to the at‐satellite recorded signal. The method is based on the determination of the aerosol optical thickness through the application of the contrast tool (maximum contrast value), the radiative transfer calculations and the ‘tracking’ of the suitable darkest pixel in the scene. The proposed method that needs no a‐priori information has been applied to LANDSAT‐5 TM, LANDSAT‐7 ETM+, SPOT‐5 and IKONOS data of two different geographical areas: West London and Cyprus. The retrieved aerosol optical thickness values show high correlations with in‐situ visibility data acquired during the satellite overpass. Indeed, for the West London area a logarithmic regression was fitted for relating the determined aerosol optical thickness with the in‐situ visibility values. A high correlation coefficient (r2= 0.82; p= 0.2) was found. Plots obtained from Tanre et al. (1979, 1990) and Forster (1984 ) were reproduced and estimates for these areas were generated with the proposed method so as to compare the results. The author's results show good agreement with Forster's aerosol optical thickness vs. visibility results and a small deviation from Tanre's model estimates.  相似文献   

15.
16.
When a collection of double differences is used to compute global-positioning-system satellite orbits from a permanent network of receiving stations, linear dependence among the double-differenced observations reduces the number of double differences that contribute new information to the computations. A maximal linearly independent subset of a large collection of double differences contains all the information content of the full set. If r is the number of receivers and s is the number of satellites, the original collection of double differences may have size O(r 2 s 2), whereas the linearly independent subset has size no greater than O(rs). Only such a smaller independent subset needs to participate in the more expensive double-precision matrix computations to correctly correlate all double differences, detect cycle slips, resolve ambiguities, and compute satellite orbits and station positions and relative velocities. Dependence among double differences is characterized using vector space methods together with geometric characterizations of Boolean matrices. These characterizations lend themselves to fast, robust algorithms for computing maximal linearly independent sets (bases) of double differences. An algorithm is given for constructing a generating independent set of double differences from the Boolean array of receiving-station/satellite connections. Characterizations of generator equivalence allow alternative generating sets to be identified and selected. An updating algorithm to handle local changes in the satellite–receiver connection matrix is also described. Received: 27 August 1996 / Accepted: 28 January 1999  相似文献   

17.
 This paper generalizes the Stokes formula from the spherical boundary surface to the ellipsoidal boundary surface. The resulting solution (ellipsoidal geoidal height), consisting of two parts, i.e. the spherical geoidal height N 0 evaluated from Stokes's formula and the ellipsoidal correction N 1, makes the relative geoidal height error decrease from O(e 2) to O(e 4), which can be neglected for most practical purposes. The ellipsoidal correction N 1 is expressed as a sum of an integral about the spherical geoidal height N 0 and a simple analytical function of N 0 and the first three geopotential coefficients. The kernel function in the integral has the same degree of singularity at the origin as the original Stokes function. A brief comparison among this and other solutions shows that this solution is more effective than the solutions of Molodensky et al. and Moritz and, when the evaluation of the ellipsoidal correction N 1 is done in an area where the spherical geoidal height N 0 has already been evaluated, it is also more effective than the solution of Martinec and Grafarend. Received: 27 January 1999 / Accepted: 4 October 1999  相似文献   

18.
ABSTRACT

An Augmented virtual environment (AVE) is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment. In this paper, a new approach to establish an AVE with a wide field of view is proposed, including real-time video projection, multiple video texture fusion and 3D visualization of moving objects. A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos. A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment. The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently, and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory. In addition, a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene, visualizing a moving object and drawing its trajectory in the real time.  相似文献   

19.
In an attempt to model regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of the total electron contents (TEC) provided by the JPL analysis center. Multivariate and modulated harmonic estimation spectra are introduced and estimated for the series to detect the regular and modulated dominant frequencies of the periodic patterns. Two significant periodic patterns are the diurnal and annual signals with periods of 24/n hours and 365.25/n days (n = 1, 2, …), which are the Fourier series decomposition of the regular daily and yearly periodic variations of the ionosphere. The spectrum shows a cluster of periods near 27 days, thereby indicating irregularities at this solar cycle period. A series of peaks, with periods close to the diurnal signal and its harmonics, are evident in the spectrum. In fact, the daily signal harmonics of ω i  = 2πi are modulated with the annual signal harmonics of ω j  = 2πj/365.25 as ω ijM  = 2πi(1 ± j/365.25i). Among them, at low and midlatitudes, the largest variations belong to the diurnal signal modulated to the semiannual signal. Some preliminary results on the modulated part are presented. The maximum ranges of the modulated daily signal are ±15 TECU and ±6 TECU at high and low solar periods, respectively. A model consisting of purely harmonic functions plus modulated ones is capable of studying known regular anomalies of the ionosphere, which is currently in progress.  相似文献   

20.
Geographic citizen science has much potential to assist in wildlife research and conservation, but the quality of observation data is a key concern. We examined the effects of sampling design on the quality of spatial data collected for a koala citizen science project in Australia. Data were collected from three samples—volunteers (n = 454), an Internet panel (n = 103), and landowners (n = 35)to assess spatial data quality, a dimension of citizen science projects rarely considered. The locational accuracy of koala observations among the samples was similar when benchmarked against authoritative data (i.e., an expert‐derived koala distribution model), but there were differences in the quantity of data generated. Fewer koala location data were generated per participant by the Internet panel sample than the volunteer or landowner samples. Spatial preferences for land uses affecting koala conservation were also mapped, with landowners more likely to map locations for residential and tourism development and volunteers less likely. These spatial preferences have the potential to influence the social acceptability of future koala conservation proposals. With careful sampling design, both citizen observations and land use preferences can be included within the same project to augment scientific assessments and identify conservation opportunities and constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号