首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
南海海域新生代经历印支—南海地台裂谷期、陆间裂谷期和区域沉降阶段,形成大陆架、大陆坡和洋壳区三大区域构造单元。围绕洋壳区,大陆坡和大陆架呈准环带状分布格局。沉积盆地主要分布在大陆架和大陆坡上,亦环绕中央洋壳区呈环带状分布。南海油气勘探活动于20世纪60年代末期开始,截至目前已发现数百个油气田,这些油气田主要分布在南部、北部和西部等大陆边缘。油气田分布主要呈大陆架或其近陆部分以油田为主、大陆坡(也包括邻近大陆架部分区域)以气田为主的“外油内气”特征。油环区凹陷烃源岩以中深湖相泥岩或深海相泥岩为主,沉积有机质以Ⅰ、Ⅱ1型干酪根为主,地壳相对较厚、热流值相对较低、烃源岩主要处在生油窗以内,烃类产物主要是原油。气环区生烃凹陷烃源岩以海陆过渡相泥岩和海相烃源岩为主,沉积有机质主要是Ⅱ2—Ⅲ型干酪根,地壳厚度相对较薄,热流值高,具“超热盆”特征,烃源岩以生气为主。油环区主力储层是砂岩,形成于湖相到浅海环境,存在多套储盖组合。气环区内带存在浅水沉积和深水沉积两套储盖组合,以深水扇和生物礁储层为主,盖层主要为海相泥岩。以300 m水深为界,油环带主要位于浅水区,勘探程度较高;内带气环主要位于陆架下部及陆坡区,勘探程度较低。南海海域勘探领域正在由浅水区向深水区发展。南海油气资源丰富,有望成为我国新的大油气区。  相似文献   

2.
南海北部深水区油气勘探关键地质问题   总被引:18,自引:0,他引:18  
南海北部深水区已经获得了重大的天然气发现,正逐渐成为全球深水油气勘探的热点区之一。通过与相邻陆架区以及世界上典型深水盆地的类比发现,南海北部深水区具有独特的石油地质特征。南海北部大陆边缘经历了从燕山期主动陆缘向新生代边缘海被动陆缘的转变,其演化过程和成盆机制复杂;陆坡深水区具"热盆"特征,凹陷发育超压,其生烃机制不明;深水区距离物源区较远,缺乏世界级大河系的注入,具远源沉积特征,未发现盐层及其相关构造,其油气成藏条件具有特殊性。此外,南海北部深水区海底地形崎岖、多火山,还面临着地震采集、处理等地球物理难题。因此,南海北部深水油气勘探需要在借鉴相邻陆架区和世界其他深水区成功经验的基础上,一方面深入研究其独特的油气地质特征,另一方面研发适应于我国深水环境的地球物理勘探新技术,切实推动深水油气勘探的进程。  相似文献   

3.
以板块构造演化为基础,利用地震、地质等资料,再现南大西洋两岸共轭型被动陆缘盆地原型盆地形成演化过程。首次依据盆地结构差异及沉积充填特征,将研究区被动陆缘盆地进一步划分为“三段”“四类”;结合对已发现大油气田的解剖,搞清了每类盆地大油气田成藏规律,并分别建立了其大油气田成藏模式。认为两岸“三段”“四类”盆地都经过了早期陆内裂谷、过渡期陆间裂谷及漂移期被动陆缘三个原型阶段。南段为下伏裂谷层系比较发育的“断陷型”盆地,上覆坳陷沉积厚度较薄,仅作为区域盖层,形成“裂谷层系构造地层型”大油气田。中段为裂谷、坳陷层系都比较发育且过渡阶段有盐的“含盐断坳型”盆地,以过渡期陆间裂谷盐岩充填为特征,其上、下的漂移期海相及裂谷期湖相页岩均可形成有效烃源岩,海相页岩及盐岩分别作为优质盖层,形成了“盐下碳酸盐岩盐上重力流扇体型”大油气田。北段为裂谷层系分布范围小、坳陷沉积范围广且厚度大的“坳陷型”盆地,受 “窄”陆棚、“陡”陆坡控制,坳陷层系重力流扇体自始至终比较发育,源于坳陷层系下部海相页岩中的油气直接充注于本身内部裙边状分布的重力流复合扇体之中,形成“漂移期重力流扇体群型”大油气田。另外,研究区还发育尼日尔、福斯杜亚马逊、佩罗塔斯三个具有独特构造沉积特征的 “三角洲型”被动陆缘盆地,其特殊性体现在三角洲层系由于沉积速率极高,从陆向海形成生长断裂带-泥岩底辟带-逆冲断裂褶皱带-平缓斜坡带四大环状构造带。除了前三角洲层系可以作为有效烃源岩之外,本身也可以形成自生自储自盖型组合,形成独特的“四大环状构造带型”大油气田,即在由陆向海生长断裂带-泥岩底辟带-逆冲断裂褶皱带-平缓斜坡带四大环状构造带上都可以形成大油气田。  相似文献   

4.
南海北部深水区油气勘探的关键地质问题   总被引:1,自引:0,他引:1  
朱伟林 《地质学报》2009,83(1):1059-1064
南海北部深水区已经获得了重大的天然气发现,正逐渐成为全球深水勘探的热点区之一。通过与相邻陆架区以及世界上典型深水盆地的类比发现,南海北部深水区具有独特的石油地质特征。南海北部大陆边缘经历了从燕山期主动陆缘向新生代边缘海被动陆缘的转变,其演化过程和成盆机制复杂;陆坡深水区具“热盆”特征,凹陷普遍发育超压,其生烃机制不明;深水区距离物源区较远,缺乏世界级大河系的注入,具远源沉积特征,未发现盐层及其相关构造,其油气成藏条件具有特殊性。此外,南海北部深水区海底地形崎岖、多火山,还面临着地震采集、处理等地球物理难题。因此,南海北部深水油气勘探需要在借鉴相邻陆架区和世界其他深水区成功经验的基础上,一方面深入研究其独特的油气地质特征,另一方面研发适应于我国深水环境的地球物理新技术,切实推动深水勘探的进程。  相似文献   

5.
The process of Cenozoic sea-land changes in the northern South China Sea(SCS)controlled the sedimentary filling pattern and played an important role in the petroleum geological characteristics of the northern marginal sedimentary basins.Under the control of the opening process of the SCS,the northern SCS Cenozoic transgression generally showed the characteristics of early in the east and late in the west,and early in the south and late in the north.The initial transgression occurred in the Eocene in the Taixinan Basin(TXNB)of the eastern SCS,while the transgression occurred until the Pliocene in the Yinggehai Basin(YGHB)of the western SCS.International Ocean Discovery Program(IODP)expeditions(Expeditions 367/368)revealed that the initial transgression of the SCS basin occurred at approximately 34 Ma,which was the initial opening time of the SCS.The period of drastic changes in the sedimentary environment caused by large-scale transgression corresponded to the opening time of the southwestern subbasin(approximately 23 Ma),which also represented the peak of the spreading of the SCS.The sea-land transition process controls the distribution of alternating continent-marine facies,marine facies source rocks and reservoirs in the basins.The marine facies source rocks of the basins in the northern SCS have a trend of gradually becoming younger from east to west,which is consistent with the regional process of gradual transgression from east to west.Regional sea-level changes were comprehensively influenced by SCS opening and global sea-level changes.These processes led to the early development in the east and south and late development in the west and north for the carbonate platform in the SCS.Carbonate platforms form another type of"selfgenerating and self-accumulating"oil-gas reservoir in the northern SCS.The sea-land transition controlled the depositional filling patterns of different basins and laid the foundation of marine deposits for oil and gas resources.The source-reservoircap assemblage in the northern SCS was controlled horizontally by provenance supply and sedimentary environmental changes caused by sea-land transition and vertically by the tectonic evolution of the SCS and regional sea-level changes.  相似文献   

6.
The Chinese landmass, as a composite region, consists of multiple small continental blocks, such as Sino-Korea, Yangtze, Tarim, etc., and orogenic belts. Because of its distinctive tectonosedimentary evolution, China’s oil/gas-bearing regions differ remarkably from that elsewhere in the world. For instance, in comparison to the Middle East oil/gas-bearing regions which are characterized by Mesozoic-Cenozoic marine oil/gas-bearing beds, early oil and gas discoveries in China are distributed mainly in Mesozoic-Cenozoic continental sedimentary basins. Generation of oil from terrestrial organic matter, or terrestrial oil generation, and the formation of large oil/gas fields in continental sedimentary basins were previously the major characteristics of petroleum geology of China. However, in the past 20 years, a series of major oil and gas discoveries from marine strata have been made. Marine oil/gas fields in China are mainly distributed in the Tarim, Sichuan, and Ordos basins, which are tectonically stable and covered with Mesozoic-Cenozoic deposits. In these basins, hydrocarbon-bearing strata are of old age and the oil/gas fields are commonly deeply-buried. Cumulatively, 995 oil/gas fields have been found so far, making China the fourth largest oil-producing country and the sixth largest gas-producing country in the world. In terms of petroleum and natural gas geology, theories of hydrocarbon generation from continental strata, such as terrestrial oil generation and coal-generated hydrocarbons, etc., have been established. Significant progress has been made in research on the sequence stratigraphy of continental strata, formation mechanisms of ultra-deep clastic reservoirs, and hydrocarbon accumulation in the continental subtle reservoir. Regarding research on the marine petroleum geology of China, with respect to the major characteristics, such as deeply-buried reservoirs, old strata, and multiple phases of transformation, important advances have been made, in areas such as the multiple-elements of hydrocarbon supply, formation of reservoirs jointly controlled by deposition, tectonic activities, and diagenetic fluid-rock reactions, and oil/gas reservoirs formed through superimposed multi-stage hydrocarbon accumulation. As more and more unconventional hydrocarbon resources are discovered, unconventional oil and gas reservoirs are under study by Chinese petroleum geologists, who endeavor to come up with new discoveries on their formation mechanisms.  相似文献   

7.
解习农  赵帅  任建业  杨允柳  姚永坚 《地球科学》2022,47(10):3524-3542
南海是西太平洋海域最大的边缘海,然而南海扩张终结后动力学过程研究仍较为薄弱.通过构造变革界面识别、褶皱冲断带沉积记录等方面的系统研究,揭示南海南部和东部陆缘在南海后扩张期的演化历程.研究表明南海南部和东部边缘经历了多个微板块从俯冲到碰撞的演变历程,形成了陆-陆碰撞、弧-陆碰撞、洋-弧俯冲等多个特征迥异的板块边界.南海南部陆缘属于古南海俯冲拖曳构造区,婆罗洲西北沙捞越-曾母地块率先碰撞,随后经历了婆罗洲东北沙巴-南沙地块碰撞、西南巴拉望-卡加延岛弧碰撞.南部多个微板块碰撞导致古南海呈剪刀式从西向东逐渐关闭和消亡,总体形成了以微地块碰撞、深海槽发育和造山带前缘巨厚沉积充填为特色的碰撞陆缘.东部陆缘属于菲律宾海俯冲-碰撞构造区,南海东部洋壳自中新世开始向菲律宾海板块俯冲,弧-陆碰撞仅局限于东部陆缘南北两端.澳洲-印度板块、菲律宾海板块与欧亚板块相互作用控制了南海边缘海闭合过程,南海正在进行的关闭过程主要集中在东缘和南缘,东缘呈现了以南海洋壳消亡为特征的闭合过程,而南缘则呈现以微陆块碰撞为特征的古南海闭合过程.显然,南部后扩张期陆缘演变可为边缘海闭合过程研究提供极佳的范例,同时对我国海洋权益保护和南海大陆边缘动力学研究具有重要意义.   相似文献   

8.
To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the tectonic histories of the basins and explore how these tectonic events controlled the hydrocarbon accumulation conditions in these basins.During the subduction of the Cenozoic proto-South China Sea and the expansion of the new South China Sea,the continental margin basins in the central-southern South China Sea could be classified as one of three types of epicontinental basins:southern extensional-foreland basins,western extensional-strike slip basins,and central extensional-drift basins.Because these basins have different tectonic and sedimentary histories,they also differ in their accumulated hydrocarbon resources.During the Cenozoic,the basin groups in the southern South China Sea generally progressed through three stages:faulting and subsidence from the late Eocene to the early Miocene,inversion and uplift in the middle Miocene,and subsidence since the late Miocene.Hydrocarbon source rocks with marine-continental transitional facies dominated byⅡ-Ⅲkerogen largely developed in extremely thick Miocene sedimentary series with the filling characteristics being mainly deep-water deposits in the early stage and shallow water deposits in the late stage.With well-developed sandstone and carbonate reservoirs,this stratum has a strong hydrocarbon generation potential.During the Cenozoic,the basin groups in the western South China Sea also progressed through the three developmental stages discussed previously.Hydrocarbon source rocks with lacustrine facies,marine-continental transitional facies,and terrigenous marine facies dominated byⅡ2-Ⅲkerogen largely developed in the relatively thick stratum with the filling characteristics being mainly lacustrine deposits in the early stage and marine deposits in the late stage.As a reservoir comprised of self-generated and self-stored sandstone,this unit also has a high hydrocarbon generation potential.Throughout those same three developmental stages,the basin groups in the central South China Sea generated hydrocarbon source rocks with terrigenous marine facies dominated byⅢkerogen that have developed in a stratum with medium thicknesses with the filling characteristics being mainly sandstone in the early stage and carbonate in the late stage.This reservoir,which is dominated by lower-generation and upper-storage carbonate rocks,also has a high hydrocarbon generation potential.  相似文献   

9.
A number of composite sedimentary basins are present on the Qinghai-Tibet (Tibetan) Plateau. Some of these basins are filled with marine sediments, whereas others are fault-bounded continental depressions. Mixed source-rock types are present, of variable organic matter content; source rocks are mainly carbonates and secondarily mudstones. Vitrinite reflectance and biomarker analyses show that Mesozoic and Cenozoic source rocks have reached the peak stages of oil generation; older source rocks may have generated natural gas. The hydrocarbon reserves of these basins are believed to total ~37.2 billion barrels. The Qiangtang-Qamdo basin probably has the greatest potential for oil exploration.  相似文献   

10.
“源热共控”中国近海盆地油气田“内油外气”有序分布   总被引:4,自引:0,他引:4  
源热共控油气形成,烃源岩是油气形成的内因,热是油气形成的外因,内因和外因缺一不可,二者耦合作用控制了含油气区内油气的形成、资源潜力与分布模式。中国近海沉积盆地主要属于新生代伸展盆地或张扭盆地,古近纪发生裂陷,早—中中新世发生区域性热沉降,晚中新世以来新构造活动在多数盆地比较活跃。中国近海新生代盆地烃源岩主要形成于古近纪...  相似文献   

11.
The South China Sea (SCS), one of the largest marginal seas in West Pacific, has experienced two marginal sea tectonic cycles, the pro‐SCS and Neo‐SCS, forming a tectonic trend of “compression in the south, extension in the north, subduction in the east and strike in the west”, with various kinds of sedimentary basins developed. The Central and Southern South China Sea (CSSCS) mainly has Zengmu, Brunei‐Sabah, Wanan, Zhongjiannan, Nanwei, Beikang, Reed, Palawan and Nansha Trough basins (Fig. 1). Since the exploration in the early 20th century, hundreds of oil and gas fields have been discovered in the CSSCS, making it one of giant oil and gas provinces in the world. However, the oil and gas potential of the CSSCS varied a lot, even among adjacent basins. Oil and gas resources in the southern Zengmu and Brunei‐Sabah basins are huge in scale, with recoverable reserves of nearly 5.3 billion tons of oil equivalent, which is ten times of that the Wanan basin in the west. The oil and gas discoveries in the Beikang basin on the Nansha block are only one three‐hundredth of Zengmu basin. No commercial discoveries have been made in the Reed and Nanwei basins. Although several studies have focused on the petroleum geology of separate basins, no systematical comparison has been made among various basins to reveal their differences and gain an overall perspective, largely due to limited datasets. The present study aims to investigate these aspects, using 90,000‐km 2D seismic profiles, 34 well logs, three cores, 36 outcrops, as well as paleontology, gravity and magnetic data.  相似文献   

12.
南海大陆边缘盆地由于边界条件的差异,不仅形成了不同类型的陆缘盆地,如离散型、走滑伸展型和伸展挠曲复合型,而且这些盆地构造演化存在明显的非同步性。这些陆缘破裂过程与南海扩张作用过程呈现明显不一致性。研究表明,南海扩张时期南海南、北大陆边缘均形成了一系列裂陷盆地,然而,南海南部、北部大陆边缘盆地裂陷作用结束时间不同,北部大陆边缘盆地裂陷作用结束于23 Ma或21 Ma,而南部大陆边缘盆地裂陷作用结束于15.5 Ma,显然北部大陆边缘盆地裂陷结束时间明显早于南部大陆边缘盆地。南海扩张停止后,南海南、北部陆缘仍表现出明显差异,北部陆缘仍以伸展作用为主,晚中新世以来出现快速沉降幕,而南海南部陆缘则以挤压作用为主,且其挤压时间及强度呈现南早北晚的特点,即南部曾母盆地明显早于南薇西盆地和北康盆地。南海南、北大陆边缘盆地形成演化的差异性,特别是构造转型差异变化,为新生代南海扩张的迁移性提供了有力的佐证,可以推断南海不同期次海盆扩张可能存在向南的突然跃迁。因此,本次研究梳理出的南海不同陆缘盆地张裂伸展的非同步性可为南海洋盆扩张演化过程解释提供新的证据。  相似文献   

13.
The Lishui Sag, in the East China Sea Shelf Basin, is rich in hydrocarbons, with the major hydrocarbon-bearing layers being the Paleocene Mingyuefeng clastic rocks. Analysis of the implicit geologic background information of these Paleocene clastic rocks using petrological and geochemical methods has significant practical importance. These Paleocene sandstones are mainly lithic arenite, lithic arkose and greywacke, composed of K-feldspar, plagioclase, authigenic clays, silica and carbonates. As continental deposits, Yueguifeng clastic rocks have high aluminosilicate and mafic detritus contents, while the Lingfeng and Mingyuefeng Formations are rich in silica due to an oscillating coastal marine depositional environment. The major element contents of these Paleocene sandstones are low and have a concentrated distribution, indicating that the geochemical composition is non-epigenetic, transformed by sedimentary processes and diagenesis. The Yueguifeng detritus comprises recycled sediments, controlled by moderate weathering and erosion, while the Lingfeng and Mingyuefeng detritus is interpreted as primarily first-cycle materials due to low chemical weathering. In the Late Cretaceous to Early Paleocene, the Pacific Plate began subducting under the Eurasian Plate, causing an orogeny by plate collision and magma eruption due to the melting of subducted oceanic crust. This resulted in the dual tectonic settings of “active margin” and “continental island arc” in the East China Sea Shelf Basin. During the Late Paleocene, the Pacific Plate margin migrated eastward along with development of the Philippine Ocean Plate, and the tectonic setting of the Lishui Sag gradually turned into a passive continental margin. Detrital sources included both orogenic continental blocks and continental island arcs, and the parent rocks are primarily felsic volcanic rocks and granites.  相似文献   

14.
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic.In the rifting stage,the margin received lacustrine and shallow marine facies sediments.In the post-rifting thermal subsidence,the margin accumulated shallow marine facies and hemipelagic deposits,and the decpwater basins formed.Petroleum systems of deepwater setting have been imaged from seismic data and drill wells.Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea.The deepwater reservoirs are characterized by the deep sea channel fill,mass flow complexes and drowned reef carbonate platform.Profitable capping rocks on the top are mudstoues with huge thickness in the post-rifting stage.Meanwhile,the faults developed during the rifting stage provide a migration path favournble for the formation of reservoirs.The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta,decpwater submarine fan sandstone and reef carbonate reservoirs.  相似文献   

15.
基于对玻利维亚区域构造演化与沉积充填特征的分析,研究盆地烃源岩、储集层及盖层等油气成藏地质条件的差异,分析盆地勘探潜力。玻利维亚境内发育查科、贝尼和马德雷德迪奥斯等3个重点盆地,均是在前寒武系基底基础上发育起来的叠合盆地,盆内依次充填了古生代克拉通边缘海相沉积层序、三叠纪-白垩纪裂谷期海相-海陆过渡沉积层序和晚白垩世至今前陆陆相沉积层序。油气成藏地质条件综合对比分析认为,3个盆地均发育泥盆系主力烃源岩,储集层以泥盆系-石炭系和白垩系砂岩为主,发育古生界泥岩和碳酸盐岩及古近系泥岩等多套区域盖层。成熟烃源岩主要分布在冲断带和前渊区,油气必须通过垂向和侧向运移才能聚集成藏,具有晚期生烃、晚期成藏的特点。马德雷德迪奥斯盆地前渊-斜坡带低幅构造圈闭和地层圈闭、查科盆地和贝尼盆地逆冲褶皱带构造圈闭是主要的勘探目标。  相似文献   

16.
笔者根据我国陆相盆地富油、海相地层盆油、“盆小油量大”、油气与金属-非金属矿床伴生等特点,提出油气成藏物质侧向源的观点,依据碰撞造山成岩成矿与流体作用模式(CPMF)分析盆山转变过程中流体产生,运移,有机-无机分离和富集的机制,建立了盆山转换过程流体作用与油气侧向源模式。从油气田富集金属元素,造山带金属矿床成矿流体含烃类等有机组分,盆地沉积所堆积的有机质随盆山转换而形成油气,现代油气盆地与造山带金属矿集区空间耦合等4个方面论证了油气成藏物质侧向源的客观性和流体运移成藏模式的科学性。讨论了中国陆相油气藏的形成和分布规律,提出了今后油气勘查的方法。  相似文献   

17.
地块—海槽边缘带成油成气新概念   总被引:1,自引:0,他引:1  
对准噶尔,塔里木等盆地沉积环境的研究表明,古生代时,中国西北区海相沉积,沉积盆地的基底是一些离散的古老结晶地块,其上海水侵浸,地块之间为大洋或窄大洋的海槽,地块之间的海槽或地块与海槽过渡的边缘带盆地是油气形成的有利地带。  相似文献   

18.
丁巍伟 《地球科学》2021,46(3):790-800
边缘海如何形成是地球科学的基本问题.本研究通过对南海区域深反射地震数据及钻井数据的综合解释,聚焦地壳深部结构和三维全变形机制,在南海陆缘张裂-海盆扩张的构造动力学研究中取得重要进展:(1)"大陆破裂非均一":拉张过程垂向上分层非均一,受拆离断层系统控制;裂离过程横向上高度变化,中-东侧受岩浆作用主导,西侧受构造作用主导...  相似文献   

19.
ABSTRACT

The South China Sea (SCS) is an excellent site for studying the process of conjugate margin rifting, and the origin and evolution of oceanic basins. Compared with the well-defined northern margin of the SCS, the western and southern segments of the SCS margin have not been researched in significant detail. To investigate the regional structure of the southwestern SCS, a gravity model is constructed, along with the lithospheric thermal structure along a wide-angle seismic profile. The profile extends across the conjugate margins of the Southwest Sub-Basin (SWSB) of the SCS and is based on the latest multiple geophysical measurements (including heat flow and thermo-physical parameters). The results show that the average thicknesses of the crust and thermal lithosphere along the profile are about 15 km and 57 km, respectively. The overall amount of extension of continental crust and lithosphere is more than 200 km. Thermal structure of the lithosphere shows that the continental margins are in a warm thermal state. The southwest SCS is characterized by ultra-wide, thinned continental crust and lithosphere, high Moho heat flow, early syn-rift faulted basins, undeformed late syn-rifting, and high seismic velocities in the lower crust. These various pieces of evidence suggest that the break-up of the mantle lithosphere occurred before that of the continental crust favouring a depth-dependent extension of the southwestern SCS margin.  相似文献   

20.
谢锦龙  黄冲  向峰云 《地质科学》2008,43(1):133-153
南海西部海域构造复杂,主要发育有北东—北东东向、北西向和近南北向3组深大断裂。其中,北西向断裂与板块汇聚、碰撞有关,多具走滑性质;北东—北东东向断裂具有与中国东部裂谷盆地相似的发育特点,呈张扭性质;近南北向断裂可能是南海在扩张活动期间于洋、陆壳过渡部位形成的走滑调节断裂,是洋盆扩张的西部边界。新生代里,南海经历了4次成盆事件与3期扩张活动,盆地经历了古新世—中始新世陆缘断陷、渐新世—早中新世扩展与中中新世以来的热沉降3个演化阶段。陆缘断陷阶段的充填系列主要是北东—北东东向与北西向的河流—冲积扇、湖泊沼泽等陆相沉积及火山岩等;盆地扩展阶段表现为中-小型断陷、断-坳陷逐渐复合与联合为大-中型坳陷,古地理格局逐渐由河流与湖沼陆相环境演变为滨海至浅海相的沉积环境;热沉降阶段的成盆活动逐渐减弱以至停止,地层表现超覆,盆地出现联合迹象。结合以往勘探与油气资源调查成果分析,认为南海西部海域陆架陆坡区发育的大-中型沉积盆地石油地质条件良好,蕴藏着丰富的油气资源,勘探潜力巨大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号