首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现有地面三维激光扫描点云数据滤波算法较少,针对地形复杂区域的点云滤波效果更是不甚理想,因此对二维聚类算法进行改进,提出三维点云聚类滤波算法,并对其在地形复杂区域的TLS数据滤波中的应用进行研究。以重庆鸡冠岭危岩体的TLS数据为例,分别采用曲率平滑滤波方法和文中提出的点云聚类滤波方法处理,并对两种方法处理过的数据进行形变量计算和分析。实验证明,针对植被覆盖茂密、地形复杂的山体,该方法的点云滤波效果较好,且处理速度有较大提升,能为点云后期形变量计算提供较好的基础。  相似文献   

2.
Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical consistency between point clouds and stereo images. Finally, an over-segmentation based graph cut optimization is carried out, taking into account the color, depth and class information to compute the changed area in the image space. The proposed method is invariant to light changes, robust to small co-registration errors between images and point clouds, and can be applied straightforwardly to 3D polyhedral models. This method can be used for 3D street data updating, city infrastructure management and damage monitoring in complex urban scenes.  相似文献   

3.
半自动机载LiDAR点云建筑物三维重建方法   总被引:1,自引:1,他引:0  
针对全自动建筑物3D重建存在需要后续人工检验,且发现重建错误需要花费额外时间修改的问题,提出了一种半自动的面向对象的机载LiDAR点云建筑物3D重建方法。基于建筑物类别点云的联通分析和平面生长分割结果,提出了自动的建筑物栋数检测、单栋建筑物外轮廓提取、单栋建筑物内部结构线提取方法;同时,在计算机无法完成部分工作时,人工辅助计算机完成高程阶越线提取、识别建筑物屋顶附属物点云等工作。实验证明,该方法可以适用于高密度机载LiDAR点云数据中城区大部分建筑物的3D模型重建。  相似文献   

4.
An automated method for 3D modelling of complex highway interchanges is presented. Laser data and 2D topographic map data have been combined in an innovative 3D reconstruction procedure. Complex situations as shown in this paper demand knowledge to guide the automatic reconstruction. This knowledge has been used in the fusion procedure to constrain the topological and geometrical properties of the reconstructed 3D model. These additions are needed to take care of the lack of data in occluded areas. Laser data has been segmented and filtered before it is fused with map data. In the surface-growing algorithm combining map and laser points, the laser data is assigned to the corresponding road element. Although results are shown using two specific data sources, the algorithm is designed to be capable of dealing with any polygon-based topographic map and any aerial laser scanner data-set.  相似文献   

5.
一种机载LiDAR点云电力线三维重建方法   总被引:5,自引:0,他引:5  
林祥国  段敏燕  张继贤  臧艺 《测绘科学》2016,41(1):109-114,64
针对直升机激光雷达电力巡线中电力线三维重建方法研究的不足,文章提出一种长距离架空输电线路直升机激光雷达点云数据的电力线三维重建方法,它包括电力线激光雷达点云聚类、悬挂点检测和电力线三维建模等3个部分:首先运用3D连通成分分析分离出某一电力线的点;然后在XOY平面上对某一电力线的点进行线性拟合和格网索引,通过二阶导数分析分离出某一档某一根电力线的点;最后对单根电力线进行三维建模,且三维模型使用比例因子作为抛物线参数。实验表明,该方法在重建过程中对输电线走廊内线路数目、电力线的根数、电力线类型、电力线的空间配置结构、线路长度、线路曲率等因素不敏感,且具有效率高、重建精度高的优势。  相似文献   

6.
The extraction of object features from massive unstructured point clouds with different local densities, especially in the presence of random noisy points, is not a trivial task even if that feature is a planar surface. Segmentation is the most important step in the feature extraction process. In practice, most segmentation approaches use geometrical information to segment the 3D point cloud. The features generally include the position of each point (X, Y and Z), locally estimated surface normals and residuals of best fitting surfaces; however, these features could be affected by noisy points and in consequence directly affect the segmentation results. Therefore, massive unstructured and noisy point clouds also lead to bad segmentation (over-segmentation, under-segmentation or no segmentation). While the RANSAC (random sample consensus) algorithm is effective in the presence of noise and outliers, it has two significant disadvantages, namely, its efficiency and the fact that the plane detected by RANSAC may not necessarily belong to the same object surface; that is, spurious surfaces may appear, especially in the case of parallel-gradual planar surfaces such as stairs. The innovative idea proposed in this paper is a modification for the RANSAC algorithm called Seq-NV-RANSAC. This algorithm checks the normal vector (NV) between the existing point clouds and the hypothesised RANSAC plane, which is created by three random points, under an intuitive threshold value. After extracting the first plane, this process is repeated sequentially (Seq) and automatically, until no planar surfaces can be extracted from the remaining points under the existing threshold value. This prevents the extraction of spurious surfaces, brings an improvement in quality to the computed attributes and increases the degree of automation of surface extraction. Thus the best fit is achieved for the real existing surfaces.  相似文献   

7.
This article proposes a novel method for the 3D reconstruction of LoD2 buildings from LiDAR data. We propose an active sampling strategy which applies a cascade of filters focusing on promising samples at an early stage, thus avoiding the pitfalls of RANSAC‐based approaches. Filters are based on prior knowledge represented by (nonparametric) density distributions. In our approach samples are pairs of surflets—3D points together with normal vectors derived from a plane approximation of their neighborhood. Surflet pairs provide parameters for model candidates such as azimuth, inclination and ridge height, as well as parameters estimating internal precision and consistency. This provides a ranking of roof model candidates and leads to a small number of promising hypotheses. Building footprints are derived in a preprocessing step using machine learning methods, in particular support vector machines.  相似文献   

8.
道路边界精确提取建模是城市道路管理、智能交通规划和高精度地图制作等领域的重要课题之一。本文提出了一种基于车载激光雷达点云数据和开源街道地图(OSM)的三维道路边界精确提取方法。首先,针对原始车载LiDAR点云数据应用布料模拟滤波分离地面点,再结合相对高程分析获取道路边界点候选数据集。然后,应用OSM矢量道路网数据的节点辅助道路边界点候选点集进行分段。最后,在各分段点云数据集中基于随机抽样一致性算法获得三维道路边界点集。通过直道、弯道及高密度复杂场景3种不同类型的城区道路边界路段分类提取试验。结果表明,利用该方法进行道路边界提取的准确率和召回率分别达96.12%和95.17%,F1值达92.11%,本文方法可用于高精度道路边界的三维精细提取与矢量化,进而为智能交通与无人驾驶导航提供支撑。  相似文献   

9.
ABSTRACT

Visibility determination is a key requirement in a wide range of national and urban applications, such as national security, landscape management, and urban design. Mobile LiDAR point clouds can depict the urban built environment with a high level of details and accuracy. However, few three-dimensional visibility approaches have been developed for the street-level point-cloud data. Accordingly, an approach based on mobile LiDAR point clouds has been developed to map the three-dimensional visibility at the street level. The method consists of five steps: voxelization of point-cloud data, construction of lines-of-sight, construction of sectors of sight, construction of three-dimensional visible space, and calculation of volume index. The proposed approach is able to automatically measure the volume of visible space and openness at any viewpoint along a street. This approach has been applied to three study areas. The results indicated that the proposed approach enables accurate simulation of visible space as well as high-resolution (1 m × 1 m) mapping of the visible volume index. The proposed approach can make a contribution to the improvement of urban planning and design processes that aim at developing more sustainable built environments.  相似文献   

10.
利用RANSAC算法对建筑物立面进行点云分割   总被引:1,自引:0,他引:1  
李娜  马一薇  杨洋  高晟丽 《测绘科学》2011,36(5):144-145,138
建筑物立面点云分割是车载激光扫描数据特征提取与建模的基础.本文将随机抽样一致性算法( Random Sampling Consensus)方法引入对点云的分割中,并在判断准则中引入了点云的r半径密度,消除了噪声的影响,同时建立角度和距离两个约束条件对平面分割结果进行优化,提取出了最终的建筑物立面特征平面.  相似文献   

11.
大范围城市三维模型管理技术研究   总被引:1,自引:0,他引:1  
对城市三维地理信息系统中海量三维数据的有效组织和管理可以提高三维场景的实时可视化.本文利用数据库设计了由建筑物几何数据表结构、建筑物纹理数据表和独立地物表组成的城市模型库结构,通过客户端的可视化效果验证模型数据库管理和组织方式是可行且高效的,提高了实时性.  相似文献   

12.
3D indoor navigation in multi‐story buildings and under changing environments is still difficult to perform. 3D models of buildings are commonly not available or outdated. 3D point clouds turned out to be a very practical way to capture 3D interior spaces and provide a notion of an empty space. Therefore, pathfinding in point clouds is rapidly emerging. However, processing of raw point clouds can be very expensive, as these are semantically poor and unstructured data. In this article we present an innovative octree‐based approach for processing of 3D indoor point clouds for the purpose of multi‐story pathfinding. We semantically identify the construction elements, which are of importance for the indoor navigation of humans (i.e., floors, walls, stairs, and obstacles), and use these to delineate the available navigable space. To illustrate the usability of this approach, we applied it to real‐world data sets and computed paths considering user constraints. The structuring of the point cloud into an octree approximation improves the point cloud processing and provides a structure for the empty space of the point cloud. It is also helpful to compute paths sufficiently accurate in their consideration of the spatial complexity. The entire process is automatic and able to deal with a large number of multi‐story indoor environments.  相似文献   

13.
史潇天  马洪超  周薇薇  张良 《遥感学报》2016,20(6):1352-1360
现有密集匹配点云数据已实现了地表3维信息的精细化表达,然而由于误匹配,此类点云往往包含一定数量粗差点并影响后续应用的处理效果。针对此类数据中误匹配所产生粗差点的剔除问题,将变差甬数引入移动最小二乘(MLS)粗差剔除算法。变差函数对MLS拟合区域内点对间的相关性进行估算,以此为依据设置权值对最小二乘的结果进行优化;然后利用MLS局部、分区域地对点云进行曲面拟合;最终根据拟合结果剔除粗差。利用A3数字测图系统生成的城区、山区密集点云数据进行实验,并将处理结果、等权MLS处理结果与人工剔除结果进行对比。实验结果表明该算法可有效对点云中的粗差进行剔除,相较于等权MLS粗差剔除算法,陔算法在城区、山区的误判率分别降低了5.16%和1.31%。  相似文献   

14.
Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive “scanning lines”, which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech’s Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds.  相似文献   

15.
针对倾斜摄影场景中建筑物单体化问题,本文提出了基于倾斜摄影测量点云数据的建筑物识别和边界提取自动化算法。首先,对点云进行预处理,去除地面点和噪声点;然后,对点云进行二维栅格化处理,按间隔距离预分割;最后,结合改进的大津算法和区域增长算法,从预分割点云识别其中的建筑物,并提取建筑物边界点。从广东省江门市和湛江市选取两处试验区域对算法进行测试,结果表明:区域内建筑物点云均能准确被分割识别,建筑物边界提取准确度分别为87.8%与92.3%,说明本文提出的方法对于倾斜摄影测量建筑物识别和边界提取的适用性较强。  相似文献   

16.
羌云娟  吴侃  秦臻 《测绘工程》2011,20(2):43-45
三维激光扫描仪对地面进行扫描时,会产生很多非地面点,即噪声点,对后续研究带来很多不便.针对这一问题,提出两种基于三维TIN的非地面点云剔除方法,分别是根据判断相邻三角形法向量的夹角以及构建局部平面的方法,介绍两种剔除方法的原理及实现过程,以拟合局部平面的方法进行实例分析,得出剔除结果.  相似文献   

17.
This paper proposes an automatic method for registering terrestrial laser scans in terms of robustness and accuracy. The proposed method uses spatial curves as matching primitives to overcome the limitations of registration methods based on points, lines, or patches as primitives. These methods often have difficulty finding correspondences between the scanned point clouds of freeform surfaces (e.g., statues, cultural heritage). The proposed method first clusters visually prominent points selected according to their associated geometric curvatures to extract crest lines which describe the shape characteristics of point clouds. Second, a deformation energy model is proposed to measure the shape similarity of these crest lines to select the correct matching-curve pairs. Based on these pairs, good initial orientation parameters can be obtained, resulting in fine registration. Experiments were undertaken to evaluate the robustness and accuracy of the proposed method, demonstrating a reliable and stable solution for accurately registering complex scenes without good initial alignment.  相似文献   

18.
本文针对深度神经网络算法应用于机载激光点云进行大规模建筑物提取的问题,分别选取PointNet++和PointCNN两个网络模型进行了改进和对比。对于PointCNN,通过参数调整,使其更适合大场景信息提取。对于PointNet++,为了增加更多特征,加快大场景下网络模型的训练效率,在网络体系结构中添加了一种新的特征提取层——K-means层。另外,通过在测试数据集上的训练和验证发现,本文基于深度学习方法的分类较好地克服了点云的无序特性,能够更好地利用点之间的空间相关性,改进后两种模型的精度均达96%以上,在建筑物提取的时间效率和效果上优于原始模型。  相似文献   

19.
室内移动 LiDAR测量系统集成了IMU、激光扫描仪、数码相机等仪器设备,在无GNSS室内场景的三维空间信息快速获取方面取得了重大突破,为室内空间数据获取提供了全新的技术手段.然而,由于室内环境复杂、目标丰富、移动对象、多次反射等情况,移动LiDAR测量系统获得的点云具有遮挡严重、数据缺失、噪声较大、密度分布不均匀的特...  相似文献   

20.
This article discusses the use of 3D technologies in digital earth applications (DEAs) to study complex sites. These are large areas containing objects with heterogeneous shapes and semantic information. The study proposes that DEAs should be modular, have multi-tier architectures, and be developed as Free and Open Source Software if possible. In DEAs requiring high reliability in the 3D measurements, point clouds are proposed as basis for the 3D Digital digital earth representation. For the development of DEAs, we propose to follow a workflow with four components: data acquisition and processing, data management, data analysis and data visualization. For every component, technological challenges of using 3D technologies are identified and solutions applied for a case study are presented. The case study is a modular 3D DEA developed for the archaeological project Mapping the Via Appia. The 3D DEA allows archaeologists to virtually analyze a complex study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号