首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-1999) design standards so that the usual detailing defi ciencies in existing school buildings in Taiwan could be simulated. Two different structural details were chosen to fabricate the full-scale specimens for each retrofi tting technique. The study confi rmed that either RC jacketing or the installation of wing walls with two different structural details can effectively improve the stiffness and strength of an existing column. RC jacketing shows a better improvement in energy dissipation and ductility when compared to the columns with wing walls installed. This is because the two RC jacketed columns experienced a fl exural failure, while a shear failure was found in the two columns with the wing walls installed, and thus led to a drastic decrease of the maximum lateral strengths and ductility. Since many factors may affect the installation of a post-installed anchor, it is better to use standard hooks to replace post-installed anchors in some specifi c points when using RC jacketing or installing wing walls.  相似文献   

2.
Numerous non‐ductile reinforced concrete (RC) buildings with little or no shear reinforcement in beam‐column joints can be found in regions of moderate seismicity. To strengthen such substandard beam‐column joints, this study proposes a method in which RC wing walls are installed beside existing columns, which overcomes the lack of realistic strengthening methods for congested connections in RC buildings. The proposed strengthening mechanism improves the joint moment capacity by utilizing tension and compression acting on the beam–wing wall boundaries; thus, brittle joint hinging failure is prevented. Three 3/4‐scale RC exterior beam‐column joint specimens without shear reinforcement, two of which were strengthened by installing wing walls with different strengthening elements, were fabricated and tested. The test results verified the effectiveness of the proposed strengthening method and the applicability of this method to seismically substandard beam‐column joints. © 2017 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

3.
This paper investigated the use of external steel jacketing for seismic retrofit of non‐ductile reinforced concrete (RC) bridge columns to prevent lap‐splice failure. Three 1/2.5‐scale specimens were tested under cyclic loads. The effectiveness of two types of steel jackets for improving the ductility and strength of specimens using inadequate transverse reinforcing and lap‐splice details were examined. An octagonal steel jacketing scheme for the seismic retrofitting of rectangular RC bridge columns was proposed. In addition, the methods for seismic retrofitting rectangular columns using elliptical steel jacketing were also critically tested. The test results indicated that the octagonal steel jackets can effectively provide confinement thereby mitigating failures as a result of inadequate transverse reinforcing and inadequate lap‐splices. Tests also confirmed that the ductility performance and the energy dissipation capacity of the specimens can be significantly improved by the octagonal steel jacket. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Four types of seismic design details were tested using 11 transfer column specimens and one comparison specimen of RC under low cyclic reversed loading. Test results show that diagonal cracks control the failure pattern and damage occurs mainly in the RC section with weak shear capacity in the transfer columns. There is a large difference in the bearing capacity and ductility of the transfer columns according to the test results, which indicates that the strengthening effect of diverse structural measures is quite different. The section ratio of I-section-encased steel and the axial compression ratio also have a great influence on the bearing capacity and ductility. Although the bearing capacity of transfer columns with additional longitudinal bars and additional X bars is relatively large, they have poor deformation capacity. Setting more stirrups along the columns is the best structural measure to enhance the seismic performance. The studs on the I-sectionencased steel by welding can help to complete the stress transfer between the steel and concrete, and avoid performance degradation of the two materials due to bonding failure.  相似文献   

5.
This paper examined the statistical relationship between the curvature ductility demands of columns and the global displacement ductility demands of reinforced concrete (RC) frame structures when subjected to earthquakes. Elements with a designated moment–curvature relationship were adopted for both beam and column elements, and five-story and ten-story RC frame numerical structures were established. Using pushover analysis and earthquake nonlinear dynamic time-history analysis, the maximum global displacement ductility demands of the structure and the maximum curvature ductility demands of the columns were determined. The effects of the spectral acceleration and the strong column factor on ductility demands were analyzed, and the quantitative relationship between the curvature ductility demands of columns and the global displacement ductility demands of frame structures were established. Moreover, the validity of the established relationship was further tested and verified through a real-world application. The results show that the maximum curvature ductility demands of the columns and the maximum displacement ductility demands of the structure were positively associated with the spectral acceleration and negatively associated with the strong column factor. A proposed first-degree linear relationship between curvature ductility of columns and structural displacement ductility in RC frame structures with two parameters was obtained by curve fitting, while considering the effect of the strong column factor. The model was highly correlated with the sampling analysis data. Applying the empirical model established in this study is a simple and effective means to guide the design of ductility and the assessment of RC frame columns.  相似文献   

6.
Reinforced concrete (RC) frame structures are one of the mostly common used structural systems, and their seismic performance is largely determined by the performance of columns and beams. This paper describes horizontal cyclic loading tests often column and three beam specimens, some of which were designed according to the current seismic design code and others were designed according to the early non-seismic Chinese design code, aiming at reporting the behavior of the damaged or collapsed RC frame strctures observed during the Wenchuan earthquake. The effects of axial load ratio,shear span ratio, and transverse and longitudinal reinforcement ratio on hysteresis behavior, ductility and damage progress were incorporated in the experimental study. Test results indicate that the non-seismically designed columns show premature shear failure, and yield larger maximum residual crack widths and more concrete spalling than the seismically designed columns. In addition, longitudinal steel reinforcement rebars were severely buckled. The axial load ratio and shear span ratio proved to be the most important factors affecting the ductility, crack opening width and closing ability, while the longitudinal reinforcement ratio had only a minor effect on column ductility, but exhibited more influence on beam ductility. Finally, the transverse reinforcement ratio did not influence the maximum residual crack width and closing ability of the seismically designed columns.  相似文献   

7.
Bonding fiber reinforced polymer (FRP) has been commonly used to improve the seismic behavior of circular reinforced concrete (RC) columns in engineering practice. However, FRP jackets have a significant stress hysteresis effect in this strengthening method, and pre-tensioning the FRP can overcome this problem. This paper presents test results of 25 circular RC columns strengthened with pre-stressed FRP strips under low cyclic loading. The pre-stressing of the FRP strips, types of FRP strips and longitudinal reinforcement, axial load ratio, pre-damage degree and surface treatments of the specimens are considered as the primary factors in the tests. According to the failure modes and hysteresis curves of the specimens, these factors are analyzed to investigate their effect on bearing capacity, ductility, hysteretic behavior, energy dissipation capacity and other important seismic behaviors. The results show that the initial lateral confined stress provided by pre-stressed FRP strips can effectively inhibit the emergence and development of diagonal shear cracks, and change the failure modes of specimens from brittle shear failure to bending or bending-shear failure with better ductility. As a result, the bearing capacity, ductility, energy dissipation capacity and deformation capacity of the strengthened specimens are all significantly improved.  相似文献   

8.
Unreinforced masonry infill walls are widely used as non-structural partitions in RC frames. The effects of infills on the structural responses are often ignored in the design process since they are generally considered as expendable elements. However, recent studies have shown that not only shear damage can be inflicted to the columns braced by the infill walls, but also that the structural stability can be jeopardised by the fall-off of the infills. This paper presents the development of new detailing methods for the infill walls, which features slit panels, isolation gaps between the infills and columns, and anchorage of the infills. The proposed detailing methods were tested and verified experimentally using shake-table tests on five 1/3-scale infilled RC frame specimens with different combinations of the features stated above. The design and construction of the shake-table test specimens have taken into account the similitude requirements. The test results indicate that the proposed detailing method effectively reduced the undesirable interaction between column and infill walls. And the use of proper anchorage could prevent the fall off of infills from the bounding frame. Furthermore, the specimens with slit infill walls displayed better seismic performances, which could be attributed to the rocking behaviour of the sub-panels with increased aspect ratios.  相似文献   

9.
The use of a new type of reinforced concrete (RC) jacket for RC exterior beam–column connections damaged by seismic excitations is addressed and experimentally investigated. The proposed jacket has very small thickness and includes small diameter steel reinforcement. This jacketing applies at the joint region and at a small part of the columns and the beam. The main advantage of the proposed thin and locally applied jacket compared with the commonly used concrete jacket is the fact that its application is not restrained by space limitations, and since it slightly changes the initial size of the elements, the building's dynamics and seismic behaviour remain practically unaffected. For the needs of this study, 10 exterior beam–column joint subassemblages were constructed and subjected to increasing cyclic loading. Later, the damaged specimens were locally retrofitted using the proposed thin RC jackets and they were retested with the same load sequence. Three different specimen configurations with various amounts of shear reinforcement in the joint area were examined and two types of jackets (a) with light and (b) with dense reinforcement were applied. Test results indicated that the seismic performance of the retrofitted specimens was fully restored and in some cases substantially improved with respect to the performance of the same specimens in the initial loading, since they exhibited higher values of load capacity and hysteretic energy dissipation. Discussion for the conditions of the use of the examined jacketing technique either as a repair or as a strengthening method is also included. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Unreinforced masonry (URM) infill panels are widely used as partitions in RC frames and typically considered as non‐structural elements in the design process. However, observations from recent major earthquakes have shown that under seismic excitation, the structural interaction between columns and infill walls can significantly alter the structural behaviour, thus causing catastrophic consequences. The purpose of this research was to propose and test an innovative low seismic damage detailing method, which isolates the infill panel from bounding columns with finite width vertical gaps during the infill panel construction phase and deploys steel wire connections in mortar layers anchored to columns. Taking into account the similitude requirements, a total of six one‐third scale, single‐storey single‐bay RC frames with different infill configurations and flexible connection details were carefully designed and tested on a shake‐table. Three real earthquake records were selected and scaled to ascending intensity levels and used as input signals. A series of thorough investigations including dynamic characteristics, hysteretic behaviour, failure mechanisms, out‐of‐plane vulnerabilities and the effect of different gap filling materials and load transfer mechanisms were rigorously studied. The experimental results indicate that the undesirable interaction between infill panels and bounding frame is significantly reduced using the proposed low seismic damage detailing concept. Direct shear failure of columns at an early stage is prevented, and structural redundancy at high levels of excitation can be provided. In general, the structural stability and integrity, and displacement ductility of infilled RC frames can remarkably be improved. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Cyclic tests of single concrete columns with smooth (plain) bars are not representative of building columns with lap splices at floor levels and story-long starter bars. Column specimens with fixity at top and bottom resemble building columns best, but few of those tested so far had smooth bars and even then without bar lap-splicing at floor level or FRP jackets at column ends. Empirical models based on single-column tests, especially the numerous ones with cantilever-type specimens, cannot be readily extended to columns with smooth bars in real-life buildings. Physical models of the Strut-and-Tie type are developed and are validated or calibrated through comparisons with laboratory tests. Their scope includes anchorage and splicing of bars with either 180° hooks or straight ends. Once validated, they are adapted to real-life multistory rectangular RC columns with smooth bars, in order to obtain the column properties of interest: the chord rotation at yielding and the cyclic ultimate chord rotation, with or without FRP jacketing. Different expressions apply to the top and bottom end of a column in a story, but a single one is used to estimate the column’s effective stiffness. Empirical alternatives fitted to the single-element test results have slightly less scatter than physical models, but caution is needed for their application to columns of real buildings. Simulations of the 3D seismic response of a plan wise asymmetric full size building, tested pseudo-dynamically before or after retrofitting all columns with FRPs or just two of them with RC jackets, provide certain confidence in the extension of the physical models for the estimation of the stiffness and ultimate deformation of columns with smooth bars in real-life buildings.  相似文献   

12.
为进一步改善混凝土核心简的抗震性能,本文提出了钢管混凝土叠合柱边框内藏钢桁架组合核心筒.进行了2个1/6缩尺的核心筒模型在低周反复荷载下的抗震性能试验研究,1个为钢管混凝土叠合柱边框毛组合核心筒,1个为钢管混凝土叠合柱边框内藏钢桁架组合核心筒.通过试验,对比分析了2个核心简的承载力、延性、刚度及其衰减、滞回特性、耗能能力及破坏特征,给出了钢管混凝土叠合柱边框内藏钢桁架组合核心筒的承载力计算模型,计算结果与实测值符合较好.研究表明,钢管混凝土叠合柱边框内藏钢桁架组合核心筒与钢管混凝土叠合柱边框组合核心筒相比,其抗震性能明显提高.  相似文献   

13.
钢筋混凝土圆形截面柱式桥墩抗震性能评价   总被引:4,自引:0,他引:4  
对4座典型的钢筋混凝土圆形截面双柱式桥墩,利用Priestley等建议的钢筋混凝土桥墩抗剪强度计算方法和型态描述方程,结合Rush-over方法进行了延性抗震能力评价。一般说来,纵桥向能够满足延性抗震要求,而横桥向一些配箍率较低的桥墩在地震中会发生脆性的弯剪破坏,其底部塑性铰将形成在柱基之中,部分桩基可能会遭受损害。  相似文献   

14.
In recent earthquakes in developing countries, severe damage was observed on reinforced concrete buildings. This study focuses on exterior beam-column joints with substandard beam rebar anchorage and seismic strengthening by installing wing walls. First, a series of experiments was conducted to investigate the seismic behavior of exterior joints with substandard beam rebar anchorage representing typical Bangladeshi buildings. Two 0.7-scaled exterior joint specimens were tested, and these specimens showed beam rebar anchorage failure and/or joint shear failure. Prior to strengthening of the joint, a series of pullout tests was conducted on postinstalled bonded anchors in low-strength concrete for strengthening design. Then, an experiment was performed to apply the strengthening method by wing walls to one of the exterior joint specimens to improve the integrity, and this method was intended to prevent the failure of beam rebar anchorage. The strengthening method is proposed to extend the development length of beam longitudinal bars by considering the embedment length along the wing walls. The test results verified the effectiveness and applicability of the proposed strengthening method to upgrade exterior RC beam-column joints with deficient beam rebar anchorage.  相似文献   

15.
基于OpenSees的CFRP加固RC短柱抗震性能数值模拟   总被引:3,自引:1,他引:2  
采用地震工程开源模拟软件OpenSees对CFRP加固RC短柱进行了静力Push over分析和低周往复加载分析,并与通用有限元软件ANSYS模拟结果进行对比研究.研究结果表明:利用CFRP进行加固,不仅阻止了RC短柱的脆性剪切破坏,而且使破坏模式转化为延性弯曲破坏,增强了结构延性,进而有效地提高其抗震性能;同ANSYS相比,OpenSees可以宏观的反映CFRP与混凝土共同作用的非线性力学特征,有效地对构件和结构进行加固后的承载力及抗震性能分析.  相似文献   

16.
Highway bridges are essential structures in the transportation system of any country in the world. Many highway bridges are reinforced concrete (RC) bridges that were constructed before the 1980s, prior to current seismic regulation codes. The continuous modification of regulation codes makes it necessary to evaluate structures, and in many cases, existing bridges require interventions to increase their seismic capacity. Among the different techniques used to improve bridge capacity, encasing the columns with RC jackets increases the strength and stiffness of the substructure. RC jacketing increases the column cross sections, improves the seismic capacity and reduces the seismic vulnerability of the bridge substructures. This work presents a parametric study to assess the expected demands of seismically deficient medium length highway bridges retrofitted with RC jacketing aimed at determining the best jacket parameters. A suite of twenty strong ground motions, recorded from a subduction seismic source close to the Pacific Coast in Mexico, was selected to characterize the seismic demand. The bridge superstructures are simply supported with five 30 m long spans for a total length of 150 m. The bridge models have five possible pier heights of 5, 10, 15 20 and 25 m and three different jacket thicknesses and steel ratios. Pushover analyses and capacity spectra of the family of accelerograms allow for the determination of the pier demands by obtaining the performance point as the intersection of the capacity and demand curves. The results allow for the determination of the influence of each parameter on the expected seismic behavior of the bridge models, with the aim of selecting the most suitable jacket characteristics to improve the seismic bridge performance.  相似文献   

17.
Reinforced concrete (RC) structures in low to moderate seismic regions and many older RC structures in high seismic regions include columns with steel reinforcement details not meeting the requirements of modern seismic design codes. These columns typically fail in shear or in a brittle manner and their behavior must be accurately captured when RC structures are modeled and analyzed. The total lateral displacement of a low ductility or shear critical RC column can be represented as the sum of three displacement components: (1) flexural displacement, (2) displacement due to slippage of the reinforcing bars at column ends, and (3) shear displacement. In this study, these three displacement components are separately modeled and then combined together following a proposed procedure based on the expected overall behavior of the column and its failure mechanism. A simplified slip model is proposed. The main objective of this research is to develop an easy-to-apply method to model and capture the cyclic behavior of RC columns considering the shear failure mechanism. The proposed model is validated using the available data from RC column and frame experiments.  相似文献   

18.
整理了国内外相关规范与相关研究中对RC柱抗震性态划分方法与指标限值,发现均是针对未震损未加固的RC柱.以相关试验得到的未预损未加固、未预损直接加固、预损后再加固的RC柱骨架曲线为对象,直接套用现有针对未震损未加固RC柱的性态划分方法与指标限值进行划分,得到对应各抗震性态分隔点处的位移角限值,发现3类RC柱在相同位移角下...  相似文献   

19.
为了提高装配式剪力墙的抗震性能,提出并设计了一片暗柱内置H型钢装配式内藏钢桁架混凝土剪力墙及一片暗柱内置圆钢管装配式内藏钢桁架混凝土剪力墙,其中H型钢竖向连接采用顶底角钢复合连接,圆钢管竖向连接采用端板焊接.通过对试件进行低周反复加载试验,得到剪力墙试件的破坏模式、滞回曲线、承载力、延性、残余变形、刚度退化和耗能能力等...  相似文献   

20.
为研究加固后锈蚀箍筋约束混凝土柱的抗震性能,设计16个钢筋混凝土矩形柱,对加速锈蚀后的试件采用外包钢及CFRP、GFRP材料进行加固处理,随后开展低周往复荷载试验,以研究不同加固材料、不同加固包裹方式、不同黏结材料等因素对锈蚀箍筋约束混凝土柱滞回曲线、骨架曲线、刚度衰减、延性性能及耗能能力等抗震性能指标的影响。研究结果表明:(1)与未锈蚀柱相比,加固后的箍筋锈蚀柱以弯剪破坏为主,CFRP加固试件较GFRP加固试件具有更高的承载力,但破坏时延性不如GFRP加固试件;(2)外包钢加固试件、CFRP加固试件、GFRP加固试件的耗能能力较未锈蚀试件分别增大222.3%、123.9%、98.5%,延性系数也相应增大45.3%、22.3%、25.6%。总之,外包钢加固对箍筋锈蚀柱抗震性能的提升最大,CFRP加固次之,但优于GFRP加固;整包加固优于环包加固;环氧树脂胶黏结略优于水泥基灌浆料黏结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号